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Many homes in Hawai‘i use cesspools and other on-site disposal systems (OSDS) instead of the

municipal sewer system. Because bills combine water and waste-water services, and homes with

OSDS do not pay for sewer service, OSDS residences have lower monthly bills compared to those with

sewer-connected systems. We use this price difference in conjunction with selection on observables

and matching methods to estimate the price elasticity of residential water demand. Matching

methods indicate that OSDS residences have systematically different characteristics than those with

sewer-connected systems, suggesting an imperfect natural experiment. We show traditional methods

lead to biased elasticity estimates, even though they are robust when selecting on observables using

OLS with or without census tract fixed effects, census block fixed effects, and non-parametric

controls trained using cross-validation and a lasso. We then estimate demand using a limited

sample of OSDS homes that have sewer-connected neighbors, which gives estimates from −0.06
to −0.08. The neighbors have no systematic differences in other characteristics and estimates are

robust to further selection on observables, but the sample differs slightly from population means

in their physical characteristics. These more defensible demand elasticity estimates, however, are

much more inelastic than estimates not based on comparison of neighbors and are generally more

inelastic than previous studies. Taken collectively, the results highlight the susceptibility of demand

estimates to omitted variable bias. Highly inelastic water demand suggests that considerably higher

prices may be needed for sustainable water management, creating some practical challenges under

current regulatory guidance. We also use our results to estimate willingness to accept a tax credit

for upgrading an OSDS system, a targeted policy that aims to improve water quality. Regardless of

whether consumers respond to average or marginal prices, our estimates imply that the tax credit is

far too small to induce voluntary participation in the program. Additional consumer welfare topics

are also considered.



1 Introduction

Growing concern about the effects of climate change and other factors impacting water availability

make it more critical than ever to gain an improved understanding of water demand and how policies

can better manage it. In addition to household characteristics and demographics (Balling, Gober,

and Jones 2008; Chang, Parandvash, and Shandas 2010), water consumers have been shown to be

sensitive to weather and climate (Balling, Gober, and Jones 2008; Mansur and S. M. Olmstead

2012; Larson et al. 2013; Breyer and Chang 2014; Lott et al. 2014). Climate change is already

negatively impacting certain areas of the country like the southwest and California, where water

use curtailment policies are needed as a result of shifts in the distributions of temperature and pre-

cipitation (Hanemann, Lambe, and Farber 2012). Policies that have proven effective in conserving

water include non-price water use curtailment strategies, such as command-and-control measures

and campaigns that persuade consumers to voluntarily alter their behavior (Gober and Kirkwood

2010; Mansur and S. M. Olmstead 2012). Other systems face growing scarcity and are ill-prepared

for climate change, so a fundamental reworking of the way they are operated will be needed to

adapt (Joyce et al. 2011).

Some economists argue that a market-based approach where water use is managed by adjusting

prices in accordance with its scarcity would be more efficient than command-and-control policies and

water conservation campaigns. A problem with many current pricing regimes is that municipalities

typically do not account for the scarcity value of water when determining water price schedules (S. M.

Olmstead 2010; Bell and Griffin 2011; Mansur and S. M. Olmstead 2012). Instead, municipalities

are typically required under statute to recover tangible costs of delivering water, which may derive

from a public source. This is the case in our study area, the Hawaiian island of O‘ahu. S. M.

Olmstead, Fisher-Vanden, and Rimsaite (2016) go further to suggest that many managers aim more

to maintain affordability for users than trying to recover the full opportunity cost of the resource,

which may result in the need for difficult changes in resource use and suggests the need for a better

understanding of how the current barriers leading to inefficient pricing can be overcome.

Since accounting for scarcity value would imply an increase in the price charged to consumers,

the resulting short-term welfare loss could be difficult to sell politically. However, the price-driven

measures would have considerable benefits, including reduced frequency of acute shortages requiring

mandatory cutbacks, more sustainable water-conserving investments and development, like drip

irrigation and xeriscaping, and better allocative efficiency, such that the highest value uses of water

are always served first. There would also be surplus revenue that could be used to serve other public

goods and, compared to command-and-control measures, there are reduced costs of monitoring and

enforcement (S. Olmstead and R. Stavins n.d.). A price-based conservation policy is essentially

costless from an enforcement perspective once it’s enacted, relative to non-price programs like

temporary bans on lawn irrigation, which are inherently more difficult to police.
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Knowledge about the nature and structure of demand helps us to determine efficient pricing,

including the prices needed for sustainable use. It also aids evaluation of non-price allocation mech-

anisms. Previous studies have found residential water demand to be generally inelastic. A literature

review by Dalhuisen et al.(Dalhuisen et al. 2003) of 64 studies with 296 elasticity estimates pub-

lished between 1963 and 2001 found that the mean and median price elasticity of water demand

for residential homes is −0.41 and −0.35, respectively, with a standard deviation of 0.86. Accord-

ing to the authors, the variation in the estimates results from the various analysis methods used,

different pricing schedules (flat, increasing block, decreasing block) of the utilities, household and

consumer characteristics, and using aggregate versus household-level data. This meta-analysis finds

elasticities that are slightly more inelastic than an earlier meta-analysis by M. Espey, J. Espey, and

Shaw (1997), which finds a mean price elasticity of −0.51 using 124 elasticity estimates from 24

articles published between 1963 and 2001. Meta analyses, however, cannot account for the strength

of the study design. Confounding and omitted variables biases are likely pervasive. As an example

of how model choice matters, a study by Nieswiadomy and Molina (1989) arrives at an estimate

of −0.55. Hewitt and Hanemann (1995), using the same data, use another approach and estimate

an elasticity of −1.6. More recent studies that use better quasi-experimental designs have found

demand to be less elastic (S. M. Olmstead, Hanemann, and R. N. Stavins 2007; S. Olmstead and

R. Stavins n.d.; Lott et al. 2014; Mansur and S. M. Olmstead 2012; Klaiber et al. 2014; Ghavidelfar,

Shamseldin, and Melville 2016). However, due to reasons we discuss in the next section, even recent

studies may suffer from poor identification and other difficulties.

In this study, we use a unique neighbor matching technique to estimate the price elasticity

of water demand for single family homes using household level data from O‘ahu. By matching

neighbors who face different pricing structures due to their sewage disposal type, but otherwise

have similar characteristics, we estimate demand to be highly inelastic at −0.06 to −0.08. These

results are shown to be unbiased and robust, and we compare them to other traditional methods

that produce robust, yet biased, estimates. The elasticity estimates are then applied to a consumer

surplus scenario specific to Hawai‘i, where the local government is offering a tax credit to homes

who upgrade their sewage systems to more expensive alternatives in an attempt to improve water

quality in the state. We show the current tax credit is insufficient to cover the net present value

of upgrading the systems, considering installation costs and the long-term welfare implications of

higher water prices resulting from the upgrades. Also discussed are broader topics of consumer

welfare in the context of the water management regime, and related price adjustment scenarios.

The rest of the paper is organized as follows: in section (2) we further discuss the context of

our study and describe in more detail the water quality issues in Hawai‘i. Section (3) provides

an overview of the data used in our analyses. Section (4) discusses the empirical strategies we

implement to estimate residential price elasticity of water demand. The results are provided in

section (5), and a discussion of the elasticity measurements and its application to water quality and
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climate issues, along with consumer welfare, is provided in section (6).

2 Context and Study Design

The methods used to estimate demand in many earlier studies often suffer from one or more short-

comings identified by Nataraj and Hanemann (2011):

1. Most studies obtain variation in price by comparing a cross section of two or more cities, or one

city over time. A cross sectional study of many different cities may be omitting unobserved

city-specific characteristics. On the other hand, estimating an elasticity using data from one

city over time may fail to control for variables that are potentially correlated with price, such

as weather effects. There is little focus on truly exogenous, random, or as-if random, changes

or differences in water prices.

2. The complexity of block pricing schedules often used to estimate elasticity poses another prob-

lem. As mentioned later, there is disagreement in the literature about the importance of price

salience and whether consumers respond to average or marginal price, which complicates or

confounds elasticity calculations. Customers’ elasticities and how they are calculated depend

on information availability, along with how the bill is presented to the customer. Some stud-

ies choose to use average price (Billings 1990; Hogarty and Mackay 1975), while others use

marginal price (Danielson 1979; Lyman 1992). Some include both (Opaluch 1982; Opaluch

1984; Martin and Wilder 1992), or use a combination of the two to create a “perceived price"

for their analyses (Shin 1985; Nieswiadomy 1992).

We address these issues by identifying the price elasticity of residential water demand using a new

quasi-natural experiment. According to the Environmental Protection Agency, Hawai‘i has more

cesspools than any other US state.1 Homes with cesspools comprise about 75% of all homes with

on-site sewage disposal systems (OSDS). Other OSDS systems include aerobic and septic systems.

While most homes on O‘ahu are billed for fresh water by the Honolulu Board of Water Supply, only

those connected to the municipal sewer are charged a sewer service fee. Thus, the Honolulu Board of

Water Supply has two groups of single-family water customers. One group has an on-site system for

sewage disposal, and only pays for clean water delivered to the home. The other group is connected

to the municipal sewer system and is buying a joint product: water service and sewer service, where

the amount of sewer service received is determined only by the amount of water consumed.

Table (1) shows the current pricing schedule faced by homes with and without sewer service.

All single family residential homes are charged according to an increasing block price structure plus

a fixed monthly fee of $9.26. However, as shown in figure (1), only 18% of households consume

1https://www.epa.gov/uic/cesspools-hawaii
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Figure 1: Histogram of household average monthly consumption. The vertical line at 13,000
gallons indicates the first block in the pricing structure. 18% of households have average
monthly use at or greater than this cutoff. The third block starts at 30,000 gallons, which
is only consistently applied to about 0.5% of homes in the sample period. The median
consumption is 7500 gallons per month, and the mean is 8900 gallons per month.

enough water to consistently place them in the second block, and only 0.5% use enough to place

them in the third block. The majority of consumers remain within the first block and face a constant

volumetric charge of $4.42 per 1000 gallons. A consumer switching from a cesspool to sewer service

will experience an increase in fixed cost of $77.55, and a volumetric increase of $4.63 per 1000

gallons. The fixed cost of the sewer service “represents [the] fixed cost associated with operating

and maintaining the municipal sewer system,” and the volumetric charge “represents [the] variable

cost of transporting and treating the wastewater.” For homes without a sub-meter that measures

water used for irrigation, the volume charged for sewer is reduced by 20%.2

Unlike some previous studies, which may rely on relatively small differences in price due to block

cutoffs, policy changes, and the like, differences between bills for residences with sewer-connections

and those with OSDS systems are substantial. If a household with an OSDS system connects

to the sewer, their monthly fixed charge increases by $77.55 and the marginal volumetric charge

more than doubles. This situation, where similar consumers face markedly different price schedules,

2https://www.boardofwatersupply.com/bws/media/images/about-your-bill-env-2019.jpg
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Table 1: Monthly residential water use charges. All water service customers are charged a fixed fee of
$9.26 per month, and a volumetric charge based on the given increasing block price structure. The sewer
service fee is in addition to the water service fee for applicable customers.

Water Service Sewer Service
Block I

≤ 13, 000 gal/mo
Block II

13, 001− 30, 000 gal/mo
Block III

> 30, 000 gal/mo
Fixed Cost $9.26 — — $77.55
Charge per
1000 gal

$4.42 $5.33 $7.94 $4.63

provides a unique opportunity to study water demand. Not only is the price difference significant

between the two groups, but the groups are also contained under one utility in the same small

geographic location. Although this comparison does not constitute a perfect natural experiment—

OSDS systems are not randomly assigned across residences—we use different methods for finding

suitable controls for residences with OSDS systems, some of which are more compelling than others.

As we show below, the most compelling natural experiment comes from comparing OSDS homes

with immediate neighbors that are connected to the sewer.

We use several methods to estimate the price elasticity of residential water demand to highlight

the importance of careful model selection while maintaining interpretability. First, we use OLS

to control for observable differences between OSDS and sewer-connected homes, with or without

census tract fixed effects, and non-parametric controls trained using cross-validation and a lasso.

Using these methods robust results similar to those found in the existing literature are obtained:

estimated elasticities range from −0.03 to −0.34 depending on the method used. However, these

results could mask the bias due to unobservable differences between OSDS and sewer-connected

residences or, in the case of lasso, produce unintuitive results that are difficult to interpret. Even

with local fixed effects, we find observable characteristics are unbalanced between the two types of

homes. We show this bias persists even after using generalized boosted regression and a propensity

score matching technique in an attempt to balance the data. Balance between the two groups is

only achieved when we reduce the sample to direct neighbors that vary by sewage disposal type.

With this method we estimate robust, unbiased elasticities in the range of −0.06 to −0.08, which is

on the lower end of our previous estimates. However, the estimates lose some statistical significance.

In addition to our primary goal of estimating elasticity and its uses in water conservation under

climate change, we use the estimates to evaluate a current effort by the local government to phase

out cesspools in the state. Following evidence that cesspools contribute significantly to coastal

water pollution, Hawai‘i has recently become the last state to outlaw new cesspools3. A study by

the Hawai‘i Department of Health estimates that existing cesspools release about 53 million gallons

3https://www.civilbeat.org/2016/03/hawaii-bans-new-cesspools/
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Figure 2: Locations of homes on the Hawaiian island of O‘ahu with other than sewer service.
Approximately 75% of these homes have cesspools. Point color indicates density of homes.

of raw sewage into the ground statewide each day4. As shown in figure (2), many of these homes are

located in coastal areas and the leaking waste is negatively affecting ground and nearshore water

quality (Amato et al. 2016; Fackrell et al. 2016).

Current efforts by the local government are underway to reduce the pollution from cesspool

leakage. In addition to the ban on new cesspools, a program has been made available to provide

a $10,000 tax credit to qualifying households that replace their existing cesspools with modern

systems like a septic tank or a sewer connection5. Septic tanks, which differ from cesspools in that

the wastewater must pass through a leach field that filters the water, may be less expensive than

a sewer connection and may therefore be preferred by customers looking to upgrade their systems.

This connection is still expensive, however, and the cost must still be paid up front by the customer

with the tax credit applying later. It is thus unclear whether the $10,000 tax credit is enough to

incentivize customers to voluntarily upgrade their systems. Further, for those who wish to connect

to the sewer system (the cleanest, most environmentally-friendly wastewater disposal option), it is

quite clear the offered tax credit falls far short of covering the costs associated not only with the

initial sewer connection, but also the net present value of an increased water bill as described above.

In many cases, connecting to the sewer may otherwise be impossible due to the location of the home

4http://health.hawaii.gov/wastewater/cesspools/
5There are 2064 homes (23% of all homes with cesspools) on O’ahu that potentially qualify for this credit.
To qualify, a cesspool has to be within 200 feet of a shoreline, perennial stream, wetland, or within a source
water assessment program area such that the duration of time of travel from cesspool to a public drinking
water source is less than two years. http://health.Hawaii.gov/wastewater/home/taxcredit/
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relative to existing sewer lines.

Exactly how much consumer surplus would be lost for a household switching from OSDS to sewer

depends on the elasticity of demand. Additionally the rationality of the consumers is likely bounded,

whether from indifference, ignorance, or poor information communication by the utility. While

economic theory tells us rational consumers will make consumption decisions based on marginal

price, it is unclear in many cases whether consumers actually respond to marginal or average price.

Previous studies have found different results on this topic. Several studies suggest consumers tend

to base consumption decisions on average price (Shin 1985; Worthington, Higgs, and Hoffmann

2009; Ito 2014; Wichman 2014). If this is true in the case of water consumption on O‘ahu, it may

have significant consumer welfare implications given the steep fixed price incurred by sewer service

customers. If they were to base decisions on average price, this large fixed cost may cause them to

consume a lesser quantity of water than the utility-maximizing amount. The current distribution

of household water use on the island seems to suggest this may be the case, since a response

to marginal price would be evident by consumption bunching at the pricing blocks. Figure (1)

shows this bunching does not exist, suggesting consumers are instead responding to average price.

However, there is a literature with results suggesting some customers may react only to marginal

price (Howe and Linaweaver Jr 1967; Nataraj and Hanemann 2011). Those that do respond to

marginal price in this study tended to be large users with higher incomes. This makes sense, since

high-income consumers using large amounts of water are more likely to have larger discretionary

uses, as mentioned above. In light of these contradictory findings we consider both cases for our

welfare analysis and, by comparing the consumption behavior of the two groups, it is possible to

determine how much sewer customers are under-consuming if we assume they are responding to

average price. Overall, our results indicate there is little difference in welfare loss between the two

cases. The loss in consumer surplus from switching from cesspool to sewer service remains much

more significant.

3 Data

Billing data for 140,646 single family homes on O‘ahu were obtained from the Honolulu Board of

Water Supply. It contains monthly data between June 2011 and March 2016. Characteristics of

these homes, such as year built, effective year built6, assessed value, and square footage, are provided

for each home by the Honolulu Real Property Assessment Division, and information regarding the

sewer, cesspool, and septic tank connections of these homes is from the Department of Health.

A small neighborhood with a separate sewer service provider, American Hawaii Water, is charged

according to a different pricing structure and were thus removed from the analysis.

6Many older homes have been renovated, effectively decreasing the age of the home. To account for this, the
“effective" year built is provided by the Honolulu Real Property Assessment Division.
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Table 2: Summary of home characteristics by wastewater disposal type. In the data, there
are 131,519 homes with sewer service, and 9127 with OSDS. Of the homes with OSDS, 7044
have cesspools. The t-tests suggest the difference between means of the characteristics for the
two groups is significantly different from 0, and using Kolmogorov–Smirnov tests suggest the
distributions are not similar.

Characteristic
Median Mean

t-statistic D-statistic
Sewer OSDS Sewer OSDS

Year built 1970 1970 1973 1968 19.9∗∗∗ 0.14∗∗∗

Effective year built 1975 1972 1977 1974 11.7∗∗∗ 0.10∗∗∗

Home size (sq. ft.) 1656 1484 1837 1735 7.3∗∗∗ 0.14∗∗∗

Home value ($1000s) 667 614 751 808 −6.5∗∗∗ 0.14∗∗∗

Yard size (sq. ft.) 4517 6180 5486 9938 −19.5∗∗∗ 0.25∗∗∗

Num. bedrooms 4.0 3.0 3.8 3.5 26.6∗∗∗ 0.09∗∗∗

Num. bathrooms 2.0 2.0 2.2 2.0 13.4∗∗∗ 0.14∗∗∗

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table (2) summarizes select physical characteristics of the homes. Of the homes 9127, or about

6.5%, are characterized as having other than a municipal sewer connection. Approximately 75%

of these are cesspools. For each characteristic, t-tests were performed to determine whether the

means of the characteristics differed between the two groups. These tests suggest the means are

significantly different between the two groups. Kolmogorov-Smirnov tests were also performed to

test whether the distributions of the characteristics differed between homes with OSDS and homes

with sewer connections. The reported D-statistic simply measures the maximum distance between

the two groups’ empirical cumulative distribution functions in absolute terms, so larger numbers

indicate distributions that are less similar. For each characteristic, the tests suggest the distributions

are significantly different from one another. This means homes with OSDS are not entirely similar

to homes with sewer connections; in experimental terms, the treatment and control groups are not

randomly assigned. We discuss the significance this difference in distributions has in more detail in

the empirical strategy section below.

For water use, we aggregate consumption across all billing periods for each home. From this we

find the average daily consumption of each home, and examine the basic water use patterns among

homes with different wastewater disposal types. Figure (3(a)) shows the empirical CDF of average

daily water use for homes with and without sewer connections. A basic calculation using only the

raw billing data shows that homes with cesspools consume about 14% more water than homes with

sewer connections. Performing a Kolmogorov-Smirnov test between the distributions of water use

for homes with sewer connections and homes with OSDS (cesspools and “other” combined) yields

a D-statistic of 0.15 that is significant at the 99% level, suggesting the distributions of water use
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between the two groups is significantly different. Using the billing data and the Board of Water

Supply price schedule in table (1), we can also calculate the amount charged to each customer in

a billing period. As expected, figure (3(b)) shows that the monthly bills of consumers with sewer

service are typically much larger than homes with cesspools due to the increased fixed and variable

costs.

One characteristic of the distribution of homes on O‘ahu is that many areas have homes with

cesspools interspersed among homes with sewer service. For example, consider the Black Point and

Tantalus neighborhoods in figure (4). In panels (a) and (c), the color of the home indicates the

type of wastewater disposal. In many cases, homes with cesspools are located closely to homes

with sewer service in the same neighborhood. Panels (b) and (d) show us that households with

cesspools tend to consume more water than homes with sewer service. One method we attempt

to use in order to estimate consumer sensitivity to price is matching homes that are close to one

another but differ by wastewater disposal type. However, this method may not be suitable since

the type of wastewater disposal system a home has is not entirely randomly assigned. This is

evidenced by the lack of balance between the two groups shown in table (2). The t-tests suggest

the means of the characteristics of the homes are significantly different between the two groups,

and the D-statistics show the distributions themselves are not the same. We also see from the

figure that homes with OSDS in both neighborhoods tend to have more land, as evidenced by the

large areas surrounding the points. In Black Point, all homes on the coast, which we expect to

have a higher value, exclusively have OSDS. We discuss in the next section how several empirical

approaches typically used to estimate elasticity may produce biased results if factors such as these

are not accounted for.
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(b) Monthly water bills by wastewater disposal type. Due to the large increase in both the fixed and
variable costs of sewer service, households with sewer service pay a median of $130.78 per month
on their total water bill, compared to a median of $30.94 for households with cesspools. Water bills
were calculated manually using the BWS pricing schedule.

Figure 3: Simple comparison of wastewater disposal groups.
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(a) Locations of Black Point homes of various sewage
types. Many of these homes, particularly those along
the coast, are very large (median 2761 sq. ft., compared
to the O‘ahu median of 1638 sq. ft.) and have other
characteristics not typical of a home on O‘ahu, such as
being on the coast. Note that all the coastal homes have
OSDS.
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(b) Average daily water use of Black Point homes in
gallons. Of the 199 homes on Black Point, those with
sewer connections consume a median 452 gallons per
day, and those with cesspools 527 gallons per day.
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(c) Locations of Tantalus homes of various sewage types.
These homes are also quite large (median 2756 sq. ft.),
and we see homes with OSDS tend to have more sur-
rounding property than those with sewer connections.
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(d) Average daily water use of Tantalus homes in gallons.
Of the 165 homes, those with sewer connections consume
a median 227 gallons per day, and those with cesspools
399 gallons per day.

Figure 4: Examples of neighborhoods with mixed sewage disposal types.



4 Empirical strategy

Often, we face a tradeoff between models that are easy to interpret and those that produce robust,

unbiased results. For example, a simple linear OLS model is very easy to interpret, but may

not accurately reflect relationships in the data. Alternately, more advanced methods like modern

machine learning techniques tend to produce unbiased and robust results, but are complex and

lack interpretability. For our study, in order to estimate an unbiased price elasticity of residential

water demand, we must account for the imbalance between the characteristics of homes with sewer

connections and homes with on-site sewage disposal systems. Our goal is to do this in a way

that retains the intuitive nature of linear regression while having the robustness of more advanced

techniques. We first demonstrate the methods that produce robust, sensible results, but hide the

bias or are difficult to interpret. These methods include simple OLS, lasso regression, and propensity

score-boosted regression models. Then, we show that accounting for the differences between the

two groups of homes, using an application of the nearest neighbor matching technique, produces a

robust elasticity estimate that produces an unbiased result while also being intuitive and easy and

interpret.

The first method we attempt to use to estimate elasticity is traditional OLS. The model takes

the form

log(wi) = α0 + α1Si + βXi + εi, (1)

where wi is the average monthly water use of household i, S is the sewage type dummy variable, and

X is a vector of household characteristics. These characteristics include the physical characteristics

from table (2) above, along with other controls for climate and household demographics. To control

for other unobserved demographic characteristics of the households, a model with census block and

census tract dummy variables was also tested. In this log-linear model the coefficient of interest, α1,

then tells us the relative water use between homes with sewer and homes with OSDS. We can then

take the characteristics of a median home to calculate l̂ogwi for homes with and without OSDS.

Using the pricing schedule in table (1) and these estimated quantities, we can finally arrive at an

estimate for price elasticity of demand7.

We then try nonlinear regression using splines as a more robust method to estimate price elastic-

ity controlling for household location and characteristics. With the log of water use as the dependent

variable, B-splines were created for each continuous control variable. With these splines, each pos-

7The elasticity is calculated using predicted water use for a median home. As was found with most homes in
the data, these predicted values remain within the first block of the rate schedule in table (1), simplifying
the elasticity calculation.
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sible combination of interactions between them were also created, resulting in approximately 60

splines tested in our model. Additional home characteristics that were included as linear terms were

the number of bedrooms and the number of bathrooms in the home. The explanatory variable of

interest, whether or not the home has a sewer connection or an OSDS, is included in the regression

as a dummy variable. The model takes the general form

log(wi) = α0 + α1Si + β


b(X1)

...

b(Xn)

+ εi, (2)

where the vector [b(X1) · · · b(Xn)]
T contains B-splines of home characteristics (and their interac-

tions) X which were chosen through a LASSO cross validation process.

The model with the best out-of-sample predictions is selected using lasso with cross-validation

at the ahupua‘a level. Ahupua‘a are traditional Hawaiian subdivisions of land that typically run

from the coast to the mountains. Figure 5 shows a map of ahupua‘a within the major districts of

O‘ahu. There are 64 ahupua‘a on the island with single family homes. Given the geography and

development patterns of the island, these land divisions span a wide range of microclimates and

home characteristics and vintages (figure (6)). Adding ahupua‘a fixed effects to our models allows

us to control for unobserved characteristics unique to these neighborhood-like divisions. Using the

results from this model, we find the median predicted water use for homes with and without an

OSDS. Again, the price charged to the homes can be calculated using the water and sewer rates from

BWS. These quantity and price values are combined to estimate the price elasticity of residential

water demand.

The final traditional technique we show is propensity score matching with generalized boosted

regression. Whether or not the household has an OSDS is used as treatment. Generalized boosted

regression, a machine learning technique, is used for model selection and estimating the propensity

scores. Covariates are the same used in the regression models. The resulting treatment effect is

used to estimate a price elasticity in a similar manner to the regression techniques.

The results of the regression and propensity score techniques are then compared to those of a one-

to-one nearest neighbor matching method. The difficulty encountered with the previous techniques

is that the two groups of homes are not balanced; even the propensity score matching method used

was unable to effectively account for the differences in characteristics between homes with OSDS

and those with sewer connections. As already noted before, homes with OSDS are often grouped

with one another, and have no suitable matches to homes with sewer connections. However, in
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Figure 5: A map of ahupua‘a within O‘ahu’s major districts.
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(a) Relative temperature (b) Relative rainfall

(c) SFD locations

Figure 6: Ahupua‘a characteristics. Maps show the relative temperature and rainfall within
ahupua‘a, and the locations and density of single family homes. Generally, higher elevation
areas are relatively cool and wet. Homes can be seen to span across a wide variety of these
microclimates, even within a small geographic area.
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some cases, there are homes with OSDS that have direct neighbors with sewer connections. This

was clearly seen in figure (4), where homes were largely grouped by sewage disposal type, but there

are several cases where direct neighbors had different sewage disposal systems. We thus restrict our

matching method only to homes that are direct neighbors, but differ by the type of sewage disposal

system. Ties (cases where a home with OSDS has more than one neighbor with a sewer connection)

are broken by matching to the home with the closest yard size, which was chosen since it created

the best balance between matches among the covariates tested. The robustness of the choice of this

tie-breaking characteristic is tested in the appendix on page (32). This is important to check, since

over half of all homes with OSDS neighboring a home with a sewer connection, neighbors more

than one home with a sewer connection. That is, more than half of all homes on OSDS who have

a neighbor with a sewer connection have two or more neighbors with a sewer connection. In our

analysis, we only perform one-to-one matching so must break many ties.

We show the balance of home characteristics between these neighbors is much improved under

the matching method. Also worth noting in support of using a nearest neighbor matching method

is that unobserved characteristics, such as demographics and location relative to the urban center

of Honolulu, are likely to have significant effects on water use. Households in relatively wealthy

neighborhoods, like the Black Point neighborhood previous discussed, may have very different uses

for water than those in the more rural areas of the island. Normal OLS does not account for these

differences, but a nearest neighbor method is able to address them by making better comparisons

and yield less biased results. Using OLS with dummies to control for the matched home pairs, we

obtain a robust, unbiased estimate for elasticity that is much less elastic than what was found using

the regression and propensity score techniques.

5 Results

Table (3) summarizes the results of all models described in the last section. Columns (1) through (3)

correspond to equation (1) using all homes in the dataset. Column (1) is a simple comparison of the

two groups, where the only variable on the righthand side is a dummy indicating if the homes has an

on-site system. Column (2) adds the home’s physical characteristics and local climate as controls,

and column (3) includes physical characteristics and census tract dummies that aim to control for

unobserved demographic characteristics of the households. The full regression tables for these results

can be found in table (A1) in the appendix on page (31). These regressions produce statistically

significant results for the OSDS coefficient, indicating homes with on-site systems consume between

7% and 23% more water than homes with sewer connections. If we use the median characteristics
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of a home8, we calculate elasticities between −0.031 and −0.31 for these models using the BWS

water rate table. However we know that these estimates are biased, since in table (2) we saw there

is an imbalance between the characteristics of homes with OSDS and those with sewer connections.

Next, we use lasso regression with cross validation at the ahupua‘a level which is not shown

in the summary table. As discussed in the empirical strategy section, splines were developed for

each continuous variable and their interactions. This resulted in 63 splines. The method allows

the individual coefficients to reduce to 0, resulting in a large sparse matrix that is impractical to

display. However, the coefficient on OSDS was estimated to be 0.1518, meaning homes with OSDS

use, on average, about 15% more water than their counterparts with sewer service. An elasticity

estimate can be derived from this result using the same strategy used with OLS: we take the median

characteristics for a home and use the results to estimate water use for a home with and without

OSDS. With robust errors clustered at the ahupua‘a level, the elasticity is estimated to be -0.28,

with a 95% confidence interval of (−0.20,−0.37). This is robust to both choice of cross validation

grouping and error clustering: no significant difference was observed when 2010 census tracts were

used instead of ahupua‘a. Again, however, these results are based on imbalanced data, which we

attempt to fix using propensity score matching and neighbor matchign techniques.

Columns (4) and (5) in table (3) show the results of the propensity-score weighted GLM mod-

els. No controls are used in model (4), but model (5) includes home characteristic and climate

covariates. In both cases the statistical significance of the coefficient estimates drop considerably,

with corresponding elasticity estimates of −0.028 and −0.058. Imbalance between the characteris-

tics of the homes with cesspools and the homes with sewer connections remained even after using

boosted regression. Table (4) compares the balance of characteristics of the entire dataset with the

balance resulting from the boosted regression. Overall, the t-statistics improved after matching.

However, statistically significant differences between the two groups still remain. Note also that

the D-statistics from the Kolmogorov-Smirnov tests are omitted since this method weights individ-

ual observations, and thus a empirical CDF of the characteristics which is needed to calculate the

statistic is not informative.

8This hypothetical median home has 1648 square feet, a 4555 square foot yard, is 44 years old, has an annual
household income of $83,472, has an average annual temperature of 23.4°C, and experiences an average
annual rainfall of 34.7 inches.
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Table 3: Summary of regression models. Elasticity calculated using daily gallons consumed by a median home with a sewer
connection (ŷ | median characteristics and OSDS = 0) and using the OSDS coefficient to estimate the water use if it had OSDS.
Associated prices used in the elasticity estimate were calculated using the BWS rates. For the models, columns (1) through (3)
use standard OLS using all data. Columns (4) and (5) use the propensity score-weighted boosted GLM model, and columns (7)
and (8) use OLS on the matched neighbors dataset. Robust errors clustered by census tract except for model (8), which uses
only robust standard errors since the matched data are already neighbors and thus spatially clustered. Only complete cases
were used across all like models. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Dependent variable:

Log mean daily water use (gallons)

(1) (2) (3) (4) (5) (6) (7) (8)

OSDS coefficient
(SE)

0.214∗∗∗

(0.010)
0.230∗∗∗

(0.025)
0.071∗∗

(0.029)
0.021

(0.036)
0.045

(0.045)
0.041

(0.060)
0.059

(0.051)
0.040

(0.074)

Data All All All All All Neighbors Neighbors Neighbors
Model OLS OLS OLS PS wtd. GLM PS wtd. GLM OLS OLS OLS
Home characteristic controls No Yes Yes No Yes No Yes Yes
Climate controls No Yes No No Yes No Yes No
Census tract dummy No No Yes No No No No No
Neighbor pair dummy No No No No No No No Yes
Observations 109,875 109,875 109,875 109,875 109,875 559 559 559
R2 0.005 0.214 0.274 0.000 0.237 0.001 0.373 0.812
Adjusted R2 0.005 0.214 0.270 0.000 0.237 −0.001 0.362 0.414

Elasticity estimate
(95% CI)

−0.31
(−0.18, −0.46)

−0.34
(−0.26, −0.41)

−0.031
(−0.027, −0.036)

−0.028
(0.063, −0.122)

−0.058
(0.056, −0.179)

−0.059
(0.105, −0.236)

−0.083
(0.058, −0.233)

−0.057
(0.269, −0.326)
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Table 4: Summary of home characteristics by wastewater disposal type before and after boosted regression
propensity score matching. Since the boosted regression weights the observations according to how well they
match under the propensity score matching method, weighted means and t-statistics are reported for the
matched pairs. The t-tests suggest the difference between means of the characteristics for the two groups
are significantly different from 0, even after boosted regression propensity score matching. D-statistics from
the Kolmogorov-Smirnov tests are not reported since observations are weighted by the model.

Home characteristic
Mean (all data) Wtd mean (matched pairs) t-statistic

Sewer OSDS Sewer OSDS All data Matched pairs

Year built 1973 1968 1974 1968 19.9∗∗∗ 12.5∗∗∗

Effective year built 1977 1974 1975 1974 11.7∗∗∗ 5.2∗∗∗

Home size (sq. ft.) 1837 1735 1855 1739 7.3∗∗∗ 8.0∗∗∗

Home value ($1000s) 751 808 948 873 −6.5∗∗∗ 6.1∗∗∗

Yard size (sq. ft.) 5486 9938 13,802 9759 −19.5∗∗∗ 12.3∗∗∗

Num. bedrooms 3.8 3.5 3.7 3.6 26.6∗∗∗ 8.4∗∗∗

Num. bathrooms 2.2 2.0 2.2 2.0 13.4∗∗∗ 9.7∗∗∗

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The neighbor matching method, whose results are shown in columns (6) through (8) of table (3),

resulted in matches that were much more similar in terms of home characteristics, as is shown in

table (5). The results with this method are much more stable across specifications, and the two

groups of homes are much more balanced. The differences in the characteristics were mostly reduced

to statistically insignificant values, except for yard size and the number of bedrooms. However, the

balance between even these characteristics were improved compared to the previous method. This

suggests the estimated effect of sewage disposal type on household water use will be much less

biased than the results from the previous methods. Applying results from this method to all homes

in the dataset must be done with caution though since, as shown in table (6), the homes used in

this method may not be representative of the homes in the full dataset. There are statistically

significant differences in many of the characteristics of these homes, both with and without OSDS.

For homes with sewer, homes in the matched neighbors dataset are typically older, larger, more

valuable homes with larger yards compared to the population. On the other hand, homes with

OSDS in the matched neighbors dataset are slightly newer, larger, and more valuable, but have

smaller yards.
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Table 5: Summary of home characteristics by wastewater disposal type before and after neighbor matching. The t-tests suggest the
difference between means of the characteristics for the two groups overall are significantly different from 0, and Kolmogorov–Smirnov
tests suggest the distributions are not similar. However, after matching using the neighbor method, these differences become insignificant
except for yard size and the number of bedrooms.

Home characteristic
Mean (all data) Mean (matched pairs) t-statistic (matched pairs) D-statistic (matched pairs)

Sewer OSDS Sewer OSDS All data Matched pairs All data Matched pairs

Year built 1973 1968 1969 1970 19.9∗∗∗ −0.69 0.14∗∗∗ 0.11∗

Effective year built 1977 1974 1974 1976 11.7∗∗∗ −1.05 0.10∗∗∗ 0.09

Home size (sq. ft.) 1837 1735 2058 1952 7.3∗∗∗ 0.43 0.14∗∗∗ 0.05

Home value ($1000s) 751 808 967 993 −6.5∗∗∗ −0.33 0.14∗∗∗ 0.06

Yard size (sq. ft.) 5486 9938 6832 6177 −19.5∗∗∗ 2.02∗∗ 0.25∗∗∗ 0.18∗∗∗

Num. bedrooms 3.8 3.5 4.0 3.7 26.6∗∗∗ 2.18∗∗ 0.09∗∗∗ 0.11∗

Num. bathrooms 2.2 2.0 2.4 2.3 13.4∗∗∗ 0.33∗ 0.14∗∗∗ 0.01

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6: Mean values of each characteristic for all homes in the data and those used in the match. In general, homes used in
the matching method do not share similar characteristics with the rest of the population, as there are statistically significant
differences between the neighbors group and all homes in the data.

Home characteristic
Sewer OSDS

Neighbors All t-statistic D-statistic Neighbors All t-statistic D-statistic

Year built 1969 1973 −3.52∗∗∗ 0.16∗∗∗ 1970 1968 1.51 0.17∗∗∗

Effective year built 1974 1977 −2.55∗∗ 0.14∗∗∗ 1976 1974 1.30 0.14∗∗∗

Home size (sq. ft.) 1994 1837 2.37∗∗ 0.10∗∗∗ 1952 1735 3.04∗∗∗ 0.10
Home value ($1000s) 967 751 4.04∗∗∗ 0.15∗∗∗ 993 808 3.12∗∗∗ 0.17∗∗∗

Yard size (sq. ft.) 6832 5486 5.96∗∗∗ 0.22∗∗∗ 6177 7405 −4.87∗∗∗ 0.17∗∗∗

Num. bedrooms 3.96 3.84 1.68∗∗ 0.07∗∗ 3.72 3.50 2.66∗∗∗ 0.06
Num. bathrooms 2.32 2.19 2.04∗∗ 0.09∗∗∗ 2.29 2.03 3.58∗∗∗ 0.10∗∗

∗ p< 0.1; ∗∗p< 0.05; ∗∗∗p< 0.01
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The lasso regression was also attempted using only the matched neighbors subset of the observa-

tions but the OSDS dummy variable was thrown out during the cross validation process, indicating

demand would be estimated to be perfectly inelastic. Overall, both OLS and LASSO produce

statistically significant, but biased, results when all observations are used. The propensity score

matching reduced, but did not eliminate, bias in the data and produced a much smaller elasticity.

The OLS model with the least amount of bias, where the observations are limited to those chosen in

the neighbor matching method, produced similarly small elasticities. Although the results with the

unbiased data are not statistically significant at the 10% level, they allow us to provide an estimate

of the bounds of the elasticity. That is, for OLS, we estimate residential water demand to be no

more elastic than −0.33 when we include the neighbor pair dummy variable. This is slightly more

inelastic than many current estimates for water demand in the literature.

6 Discussion

Having an accurate estimate of the price elasticity of water demand is becoming increasingly critical

as governments and utilities explore options for conserving water under a changing climate. This

is especially true in Hawai‘i, where currently the only viable source for fresh water is the island’s

aquifers which are replenished by rainfall. With less precipitation and warmer temperatures ex-

pected (Izuka and Keener 2013), a decrease in water supply and increase in demand will require a

more careful water management strategy until other sources like desalination become more viable.

Regulating prices to influence water use is one way this can be accomplished, but relies heavily

on consumers’ sensitivity to these prices. Without accurate estimates of price sensitivity, it will

be impossible to reach water sustainability goals with these measures. Since, in most cases, prices

would have to be raised in order to conserve water, this leads to the potential for a loss in consumer

surplus with no benefit to the water resource. Due to the variety of methods used, data availability,

pricing structures, and consumer characteristics, there is an extensive range of estimates of price

elasticity of water demand. Indeed, as we have seen in previous studies and this study, the estimate

can vary widely when different models are used with the same underlying data.

Our inelastic demand estimates suggest it may be worthwhile to explore alternative conservation

strategies, at least under the current pricing. Although a price increase may be justified since

the scarcity value of the water isn’t taken into account in the current pricing scheme (i.e. the

price of water is entirely based on the costs incurred by the utility), our results suggest that the

extremely inelastic demand makes price adjustment as a tool for water conservation much less

feasible. However, it may be that demand becomes more elastic at higher prices. For example, the
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demand for water by single family homes may actually be convex, and we only observe the inelastic

portion at lower prices in our study. More work in this area would need to be done to determine

the shape of demand at all prices. Knowing this information would be invaluable for analyzing the

welfare impacts of a price increase and how it would relate to the currently-ignored scarcity value of

water. If demand is inelastic at all prices, then increasing the price to account for the scarcity value

may result in an unreasonable loss in consumer welfare. On the other hand, if demand is convex,

the loss in welfare would be less when the price is increased to match the scarcity value. In this

case, increasing the price to a level closer to that which accounts for the scarcity value of water may

be more feasible.

For analyses on a longer time horizon, studying the impact of conservation, the evolution of

groundwater extraction over time, increasing reliance on alternative sources of water, and the impact

on consumer welfare will be critical. Given the continually-falling cost of renewable energy (Branker,

Pathak, and Pearce 2011; Trancik 2015) and energy storage (Ralon et al. 2017; Gardner et al. 2016),

alternative water management solutions may become more viable. In particular, desalination may

become an increasingly affordable alternative to groundwater extraction as energy costs decrease.

Therefore, in the long run, if we abstract from other concerns like ecological and cultural impacts,

issues regarding consumer welfare may become more critical than the specific source of the fresh

water. Even without alternatives like desalination, the optimal use of a renewable resource like water

will typically reach a state where the growth of the stock is equal to the extraction rate. In the case

of the aquifers of O‘ahu, water may continue to be drawn until it reaches its sustainable yield, defined

by parameters such as acceptable salinity measures. In theory the head level will be reduced to

the limit (plus some safety margin for water salinity standards, etc.), since any stock not extracted

may be lost to groundwater discharge to the ocean. The path taken from our current status to

the backstop, where we reach minimum head level and desalination becomes more affordable than

extraction, that also maximizes consumer welfare is another question altogether (J. A. Roumasset

and Wada 2010). That is, not only is the problem of maximum sustainable yield important, but

the optimal extraction and investment in conservation from now until we reach that level can have

significant impacts on consumer welfare. Additionally, the timing of the transition, and how quickly

it is done, from pure groundwater extraction to a hybrid of extraction and desalination can have

significant effects on consumer welfare as well (J. Roumasset and Wada 2014).

In the meantime, other studies examining the efficacy of non-price strategies show these programs

are promising alternatives to price controls. Persuasive means of reducing water use have been shown

to be effective at developing positive attitudes toward compliance, and these attitudes can be used

as predictors of water use (Landon, Kyle, and Kaiser 2016; Landon, Woodward, et al. 2018). That
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is, water conservation campaigns can be used as an effective means to persuade customers to reduce

their water use. In one study (Otaki, Ueda, and Sakura 2017), showing the customer’s usage with

emoticons indicating the level of use, and their use relative to other customers, was found to be an

effective way to reduce consumption. Another study (Woltemade and Fuellhart 2013) found similar

results for outdoor water use, where customers are shown estimates of how much water they should

need for irrigating their lawns, and the water use of their neighbors. This effect was shown to grow

stronger over time through repetition.

By significantly simplifying the consumer surplus problem at hand and ignoring potential re-

lationships with optimal pricing and groundwater extraction, our results can help estimate the

economic impact of the statewide ban on cesspools. Hawai‘i has banned the construction of new

cesspools on all islands, and is providing tax incentives to customers to upgrade their systems to

either a septic tank or sewer connection. Using back-of-the-envelope calculations, we can show that

the offered tax credit of $10,000 is not enough to cover the installation of either upgraded system,

let alone the net present value of increased monthly charges incurred by those who upgrade to sewer.

In December 2018, SB25679 went into effect, requiring owners to upgrade any cesspools on the

property within 180 days of the sale of the home. In many cases, homes will more likely upgrade

to a septic tank than connect to the sewer system. This is because, with a septic tank, there is no

additional monthly cost the customer must pay, like there is if they upgrade to sewer service. The

bill states that the average owner pays $20,000 to upgrade the system, but this may vary drastically

depending on the system being installed, location relative to existing sewer lines, and geography.

In certain cases, it may be impossible to upgrade to a sewer connection due to the lack of existing

sewer lines in the area, or the location of the home relative to the sewer line.

In any case, the cost of installing the new system alone exceeds the existing tax credit which

provides little incentive for owners to voluntarily upgrade, especially since the owners will initially

have to front the cost and receive the tax credit at a later time. If we consider the net present value

of future monthly sewer service payments, the difference becomes even larger. Figure (7) shows the

effect upgrading from cesspool to sewer connection will have on the surplus of the consumer. As

noted earlier, there is disagreement about whether consumers respond to average or marginal price,

but we show here that the difference would be minimal if consumers were acting completely ratio-

nally. Despite discussions of conservation and reducing water use, this figure suggests an increase

in welfare may be observed if consumption is increased, since the evidence suggests residences are

currently responding to average price.

Using back-of-the-envelope calculations with a discount rate of 3% and an infinite horizon, the

9https://www.capitol.hawaii.gov/session2018/bills/SB2567_.HTM
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net present value of sewer costs (not including the initial installation costs) would be

($77.55 + $40.47 + $1.77)× 12/0.03 = $47, 916,

where the monthly $40.77 comes from the welfare loss associated with the conversion in figure (7).

Even without the initial installation costs, this amount far exceeds the tax credit currently offered.

This would be in addition to the installation cost of the sewer connection, bringing the total net

present value to about $67,916. An important note is that the actual amount that would need to be

offered as a credit would likely be less than this, since there are costs associated with maintaining

an OSDS which includes emptying, repairing, and replacing the system. However, these costs vary

widely depending on system age, system type, location, and other idiosyncratic factors that make

an exact calculation difficult to perform. If we extend this value to all single family homes on

O‘ahu with cesspools (7044 homes), the island-wide net present value of the upgrades totals over

$337 million. Again, this would be an upper limit to the value since the costs associated with the

maintenance of on-site systems is ignored due to their complexity. However, this also excludes the

idiosyncratic initial upgrade costs.

Figure 7: Loss in consumer surplus when switching from OSDS to a sewer connection. The
solid line is the estimated demand curve, assuming consumers respond to average price as if
it were marginal price. The dashed demand curve shows what the response to marginal cost
would look like with the assumption customers actually respond to average price.
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A Appendix

A.1 Full regression tables

Table (A1) shows the full regression results summarized in table (3). The coefficient estimates, for

the most part, have the expected signs. Perhaps most surprising is the lack of effect of yard size,

which is thought to be one of the larger sources of discretionary water use.

Table A1: Full results of regression summary shown in table (3).

Dependent variable:

Log mean daily water use (gal)

(1) (2) (3) (4) (5) (6) (7) (8)

OSDS 0.214∗∗∗ 0.230∗∗∗ 0.071∗∗ 0.021 0.045 0.041 0.059 0.040
(0.046) (0.025) (0.029) (0.036) (0.045) (0.060) (0.051) (0.074)

Net val ($100,000) 0.019∗∗∗ 0.023∗∗∗ 0.021∗∗∗ 0.018∗∗∗ 0.046∗∗∗

(0.001) (0.002) (0.002) (0.005) (0.013)

Home size (1000s sq ft) 0.101∗∗∗ 0.101∗∗∗ 0.079∗∗∗ 0.098∗∗ −0.018
(0.007) (0.006) (0.018) (0.042) (0.108)

Yard size (1000s sq ft) 0.001 0.0003 0.001 0.030∗∗∗ −0.010
(0.0005) (0.0003) (0.001) (0.007) (0.022)

Eff. home age (decades) −0.015∗∗∗ 0.013∗∗∗ −0.008 0.019 0.057∗

(0.004) (0.003) (0.005) (0.016) (0.035)

Median HH income ($10,000) 0.001 −0.001 −0.007
(0.003) (0.003) (0.011)

Avg. ann temp (C) 0.066∗∗∗ 0.210∗∗∗ 0.250∗∗∗

(0.018) (0.058) (0.082)

Avg ann rain (in) −0.008∗∗∗ −0.005∗∗ −0.008∗∗∗

(0.001) (0.002) (0.002)

Num beds 0.064∗∗∗ 0.056∗∗∗ 0.059∗∗ 0.024 0.036
(0.005) (0.003) (0.026) (0.022) (0.054)

Num baths 0.052∗∗∗ 0.062∗∗∗ 0.030 0.085∗∗ 0.111
(0.005) (0.004) (0.029) (0.040) (0.095)

Data All All All All All Neighbors Neighbors Neighbors
Model OLS OLS OLS PS wtd. GLM PS wtd. GLM OLS OLS OLS
Census tract dummy No No Yes No No No No No
Neighbor pair dummy No No No No No No No Yes
Observations 109,875 109,875 109,875 109,875 109,875 559 559 559
R2 0.005 0.214 0.274 0.000 0.237 0.001 0.373 0.812
Adjusted R2 0.005 0.214 0.270 0.000 0.237 −0.001 0.362 0.414

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors clustered by census tract except model (8)

Observations limited to complete cases
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Table A2: Robustness of OSDS coefficient estimates with different characteristics used for
neighbor tie-breaking. The best matching variable, yard size, was chosen based on its ability
to create the most balanced matches. Rows ordered according to matching effectiveness
(best at the top). Matching effectiveness based on mean t-statistics of differences between
matched pairs. Mean D-statistics are also reported. None of the coefficient estimates are
significant at the 10% level.

Neighbor tie-breaker variable
Model OSDS coefficient estimate

Mean t-statistic Mean D-statistic
(6) (7) (8)

Yard size (table (3)) 0.041 0.059 0.040 −0.33 0.059

Home size 0.028 0.046 0.039 −0.42 0.048

Effective home age −0.011 0.042 0.013 −0.51 0.067

Net value 0.010 0.007 −0.051 −0.80 0.047

A.2 Neighbor matching robustness to tie-breaking characteristic

In the neighbor matching method, the yard size was used to break ties whenever a home with

a cesspool had more than one neighbor with a sewer connection. We test the robustness of the

resulting OSDS coefficient estimates to those derived by tie-breaking with other characteristics.

This is shown in table (A2). The columns marked (6) through (8) correspond to the regression

models from table (3). Only the coefficient estimates for OSDS are shown. The best characteristic

to break ties was determined using t-statistics of the resulting pairs’ characteristic matches. Overall,

the characteristic that yielded the lowest mean t-statistic was used to break ties. Note that, while

the sign and magnitude vary slightly from model to model, the estimates remain insignificant at the

10% level. All R2 and adjusted R2 values remained largely unchanged compared to those presented

in table (3).
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