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Abstract

Revenue decoupling (RD) is a regulatory mechanism that allows adjustments of
retail electricity rates so that the regulated utility recovers its required revenue de-
spite fluctuations in its sales volume. The U.S. utility data in 2000-2012 reveals that
RD is associated with more than 10% higher electricity prices in two years after RD
is implemented relative to similar non-decoupled utilities—an impact significantly
higher than previously thought. Theoretically, unexpected sales declines would lead
to higher electricity prices while unexpected sales increases would lead to lower prices.
RD adjustments have yielded both refunds and surcharges, but the data indicates that
electricity prices demonstrate downward rigidity and statistically significant upward
adjustments for the utilities subject to RD. Together with the likely negative impacts
of RD on low-income (as opposed to high-income) households, this analysis indicates
the limitations of decoupling, and fixed-cost recovery practice in general, which in-
volves adjustments in volumetric electricity rates.
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1 Introduction

In an effort to curb pollution externalities associated with energy use, policymakers con-

tinue to push for improved energy efficiency and distributed electricity generation. Un-

der the traditional natural-monopoly regulation (i.e., cost-of-service or rate-of-return reg-

ulation), however, the volumetric electricity prices are set above the marginal costs and

hence the profits tend to increase with the sales volume. Therefore, a utility’s interest—to

sell more electricity—is misaligned with the regulatory agenda of attaining energy effi-

ciency and conservation (Eto et al., 1997). Despite such throughput incentive, the sales

of electricity have not been growing over the last decade in the United States, leading to

concerns that the utilities are not able to recover the full costs.

Among the potential regulatory options, revenue decoupling (RD) has emerged as

an approach to help utilities overcome the disincentive to support the state’s energy-

efficiency agenda (Morgan, 2013). Revenue decoupling is generally defined as a rate-

making mechanism designed to “decouple” the utility’s revenues from its sales. By mak-

ing the utility’s revenue independent of sales, RD removes the utility’s disincentives to

promote customer efforts to reduce energy consumption or to expand distributed gener-

ation that often utilizes renewable energy (Kushler et al., 2006) .

Table 1 provides a simple illustration of how RD works.1 Consider a scenario where

the actual sales in the current year are 1 percent lower than the baseline amount of 1

million kWh. Without any revenue adjustment mechanism, this translates to about 1

percent revenue shortfall in the said year. Hence, any shock that lowers demand, be it

due to energy efficiency improvement or conservation (or any exogenous income shock),

results in lower equity earnings. Under RD, the (volumetric) electricity rate increases so

that the required revenue is earned. RD, in effect, provides a mechanisms for customers

1This illustration is based on a simple full decoupling mechanism. In reality, there are a number of ways
to implement RD, but the guiding mechanism is the same (i.e., except for flat distribution which will be
discussed later on, all of them have a true-up mechanism that adjusts the electricity rates in order to collect
the allowed revenue). For a more complete discussion of RD, see Regulatory Assistance Project (2011).
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to receive refunds or pay surcharges based on whether the revenues the utility actually

received from customers were greater or smaller than the revenues required to recover

the fixed cost.2

Table 1: An example of how RD works.

No RD in place RD in place
Revenue Requirement $115,384,615

(Based on expenses, allowed return, taxes)
Sales Forecast (kWh) 1,000,000,000
Actual Sales (kWh) 990,000,000
Unit Price ($/kWh) 0.1154 0 .1166
Decoupling Adjustment ($/kWh) −− 0 .0012
Actual Revenue $114,230,769 $115,384,615

Source: The Regulatory Assistance Project (RAP), 2011.

As of January 2019, 15 states and the District of Columbia have implemented RD for

electric utilities.3

Many states implemented RD during and immediately after the U.S. financial crisis

in 2000. As a growing number of states have ventured into adopting policies and regula-

tions with energy efficiency objectives, debates on the effectiveness of revenue decoupling

emerged. Conservation advocates argue that RD can enhance generation and distribution

efficiency by providing utilities the incentives to reduce costs and not through increase

in sales (Regulatory Assistance Project, 2011; Sullivan et al., 2011). They also argue that

RD is necessary, if not sufficient, for utilities to promote energy efficiency and/or invest

in renewables (Costello, 2006; Lowry and Makos, 2010). RD improves a utility’s finan-

cial situation and lowers risks, thus can potentially reduce the cost of capital (Costello,

2006). RD is considered to be less contentious, and hence less costly to set rates and

conduct cost recovery, than the Loss Revenue Adjustment (LRA). Other policies includ-

2Note, however, that the difference can occur for many reasons, including weather and economic con-
ditions that are not entirely within the control of the customers nor the utility. In this context, it is apparent
that RD insulates the utility from business risks that are now absorbed by the customers (Moskovitz et al.,
1992).

3The data is from https://www.nrdc.org/resources/gas-and-electric-decoupling, re-
trieved on October 8, 2019.
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ing LRA requires sophisticated measurement and/or estimation. Moreover, it is easier for

state commissions to administer/monitor as opposed to other alternatives (Costello, 2006;

Lowry and Makos, 2010; Moskovitz et al., 1992; Shirley and Taylor, 2006). Recent studies

find that the utilities under RD are associated with higher expenditure on demand-side

management, indicating larger efforts on energy efficiency improvements (Kahn-Lang,

2016; Datta, 2019).

Critics of RD, on the other hand, argue that the policy is a blunt instrument to promote

energy efficiency, particularly on the part of the utility. Because utilities must rebate the

difference between price and costs to consumers, they no longer have an incentive to

minimize costs under RD (Kihm, 2009). Knittel (2002), for example, showed that RD is

not effective in influencing utilities to improve generation efficiency because they do not

receive significant economic gains from producing energy more efficiently. Moreover,

critics suggest that the policy not only transfers the business risks from the utility to the

customers but also may cause customers in one rate class to absorb some of the impact of

demand downturns in another class (Lowry and Makos, 2010). Residential electric bills,

for instance, may increase due to a downturn in industrial demand.

Despite the controversies, little work has been done to provide clear evidence regard-

ing the effects of RD on electricity prices and, in general, economic welfare.4 One of the

potential consequences of RD, given the trend that electricity sales are not growing in

many states, is the increase in retail electricity rates. Previous studies on the effects of RD

on electricity rates argue that the associated change in electricity rates have been negli-

gible (Morgan, 2013; Kahn-Lang, 2016). In the U.S. between 2005 and 2012, 23% of the

recorded 1,244 RD adjustment cases involve retail rate adjustments between 0 and 1 per-

cent, and more than half of the cases are within the 0-3% range (Morgan, 2013). A caveat

4While there exists useful discussions on the performance of RD from various perspectives (Knittel,
2002; Brennan, 2010; Kihm, 2009; Chu and Sappington, 2013), none focused on how decoupling works in
the presence of subsidies for distributed generation or the effects of RD on electricity prices and welfare.
Comprehensive technical reports and anecdotal evidence are available (Regulatory Assistance Project, 2011;
Morgan, 2013); however, they present divergent views more than clear guiding principles on the potential
impact of RD.
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about this observation is that it captures only the immediate decoupling adjustment sim-

ilar to the one presented in Table 1. Changes in electricity prices may affect energy users’

incentives to invest in energy efficiency improvement (such as efficient appliances or solar

panels), which generate feedback effects on the demand for electricity and thus opportu-

nities for further RD adjustments. Thus RD may induce not only immediate electricity

rate changes but rate changes over time.

Can we compare electricity prices over time in states with and without RD? Care must

be taken because the states and utilities with and without RD may have different eco-

nomic characteristics, which might explain some of the differences in the prices. In this

study, we compare treated investor-owned utilities (those under RD mechanism) with

control-group utilities (those that are not subject to RD)5 with otherwise similar char-

acteristics to assess the impact of RD on residential electricity rates. Our study design

examines utility companies in 17 states that had implemented RD mechanism over the

2000-2012 period and compares their monthly electricity rates with control utilities before

and after the RD implementation. We find that decoupling tends to increase the electric-

ity rates rather substantially over months upon implementation, i.e., about 9% on average

and about 19% after two years. Using a formal economic model that allows for compar-

ison between RD and non-RD regimes, we provide insights on the potential mechanism

behind the observed price effect and policy implications on key issues surrounding resi-

dential electricity consumption.

In what follows, we provide an empirical evidence of the effect of decoupling on res-

idential rates in Section 2. To explain the potential mechanism and the implications of

decoupling on residential energy use and consumer welfare, we apply a simple theoret-

ical framework in Section 3. Section 4 provides a summary and discussion of the policy

implications.

5We define a utility as an investor-owned electric service provider operating in a particular state, which
means that utilities operating in two or more states are treated as unique utilities.
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2 Empirical Investigation

2.1 Data

Here we first investigate how revenue decoupling has influenced the electricity prices

that consumers face in the United States. To do this, we use US EIA monthly data for

the period covering January 2000 - November 2012 on about 160 unique investor-owned

utilities to investigate how RD influenced electricity rates. We drop utilities in California

from the sample because decoupling was adopted in the state prior to 2010, the begin-

ning of the sample period. The data contain information about the utilities’ sales (in

kWh), revenues, and the average electricity prices by end-use sector. We combine the EIA

data with information about the timing of revenue decoupling implementation by utili-

ties using data from a previous study (Kahn-Lang, 2016). Table 2 presents the descriptive

statistics of the sample.

In Table 2, we observe that the utilities that experienced decoupling have higher aver-

age prices than those without decoupling. This observation applies to all sectors (i.e. res-

idential, commercial, and industrial), although the difference is highest amongst residen-

tial customers. Decoupled utilities have higher sales, except for commercial customers,

and higher revenues for all customers.

By simply comparing utilities that were decoupled during the sample period with

those that remained non-decoupled, we observed significant divergence in the average

residential electricity rates as more utilities get decoupled over time (see Figure 1). To-

wards the end of 2012, average monthly electricity rates from decoupled utilities in-

creased to $0.19/kWh, which is significantly higher than the average for non-decoupled

utilities (about $0.12/kWh). This translates to about a $70 increase in monthly electric bill

for an average electric customer, more than 30-fold adjustments compared to the previous

estimate of $2.30 per month.6 The result holds even if we use nominal prices. In the next

6This calculation assumes an average monthly consumption of 1,000kWh, following a previous study
that assessed the effect of RD implementation on electricity ratesMorgan (2013).
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section, we subject our findings to more robust analyses.

Table 2: Summary Statistics

Not Decoupled Decoupled
Obs Mean SD Obs Mean SD

Prices ($/kWh)
Residential 26529 0.10 0.05 2604 0.15 0.08
Commercial 25033 0.09 2.36 2602 0.13 1.20
Industrial 26552 0.09 0.06 2604 0.13 0.07
Total 27076 0.10 1.92 2604 0.13 0.07

No. of unique State-Utilities 192 17
Years 2000-2012 2000-2012

Note: Decoupled utilities are those in a particular state that had adopted RD, which means that the values
include pre- and post-RD regime. Non-decoupled utilities are those that had not adopted RD during the
sample period.
Source: U.S. Energy Information Administration.

Figure 1: Effect of implementing Revenue Decoupling

(a) Average monthly electricity prices of decoupled and non-decoupled utilities
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2.2 Empirical Strategy

Our empirical analysis to identify the effect of revenue decoupling on electricity prices

consists of three features. First, we focus on the change from non-RD to RD regime within

the same utility operating in a particular state.7 In particular, we consider utilities that

are observed at least 12 months prior to the adoption of RD and 24 months thereafter. By

focusing on within state-utility changes we are able to account for the effect of unobserved

individual characteristics across utilities that may bias our estimates.

Second, we use difference-in-difference approach (hereafter referred to as DD) to com-

pare electricity prices of decoupled utilities with those that remain in old rate-making

schemes. The association between policy changes and subsequent outcomes are easily

assessed using pre-post comparisons. This design is valid only if there are no underlying

time-dependent trends in outcomes that are correlated to the policy change. In our case, if

electricity prices were already increasing even before the implementation of RD, perhaps

due to idiosyncractic shocks influencing electricity demand among affected households,

then using pre-post study would lead to biased estimates and potentially erroneous as-

sociation of the change to the implementation of RD. The DD approach solves this issue

by taking into account initial difference in prices between decoupled and non-decoupled

before the adoption of RD, and the difference in prices between the two groups after the

policy adoption, thus implicitly taking into account unobserved factors that may affect

prices faced by the treatment or the control group.

Our estimating equation is provided below:

pit = αi + βt + γPostit + δRDit + εit, (1)

where pit is the electricity price charged by utility i in period (month-year) t, Post is equal

to 1 when the matched utilities are in the post-RD regime and 0 otherwise, and RDit

7We define a utility as an investor-owned electric service provider operating in a particular state, which
means that utilities operating in two or more states are treated as unique utilities.

7



is a dummy variable that turns to unity when a utility starts to implement decoupling.

Coefficients α and β represent utility-state and time fixed effects, respectively, to account

for the unobserved utility-state characteristics and month-year specific shocks that are

common to all utilities (e.g. macroeconomic shocks). The error term ε is assumed to be

i.i.d. Coefficient δ measures the effect of implementing RD on the outcome variable.

One major issue in employing DD is that the estimate of δ could be biased if the control

and treatment groups have different pre-treatment characteristics (Dehejia and Wahba,

2002). In our context, this can happen if utilities suffering from a decline in sales, possibly

due to increased share in distributed generation or improved energy efficiency among

customers, lobby for RD implementation. To minimize this concern, for each utility in the

treatment group, we identify a control utility of similar electricity price trends (measured

in log difference between the electricity price a month before and 6 months before) and is

operating in the same time period. This procedure allows us to ensure that the matched

utilities most likely faced the same macroeconomic conditions and price trends before

RD is adopted. This approach, however, reduces our sample significantly. Fortunately,

the number of utility-month-year observations are large enough to generate results with

confidence.

We assess the performance of our matching procedure by comparing the sample means

of the variables used in the matching of treatment and control groups (see Table 3). We

find no statistically significant difference in the pre-RD period for the variables that were

used in matching, suggesting that our matched sample exhibit parallel pre-treatment

trends in prices. Moreover, we also find no statistically significant difference between the

means of the two groups for other variables that were not used in the matching (except

that residential revenues are different with marginal significance). Thus our procedure is

not subject to potential bias associated with selection on unobservables that affect both

assigning of treatment and outcome of interest.

After obtaining the matched pairs, we examine the effect of adopting RD on electricity

8



Table 3: Balancing test of matched RD and non-RD utilities.

Unconditional Mean

nonRD RD p-value

Pre-RD Prices (in $/kWh) 0.15 0.17 0.597
Pre-RD Price Trend 0.080 -0.010 0.179

Pre-RD Sales (in GWh) 832.28 444.15 0.132
Pre-RD Sales Trend 0.17 0.13 0.527

Pre-RD Revenues (in million $) 119.89 59.56 0.074
Pre-RD Revenue Trend 0.20 0.11 0.255

Notes: Figures reflect the unconditional means of variables for the residential sector for the matched RD
and non-RD utilities during the month before they adopted RD, unless otherwise stated. Trends are
measured in log difference. p-values are for testing the statistical significance of the mean difference
between the two groups.
Source: U.S. Energy Information Administration.

prices using the DD approach (equation 1). More specifically, we estimate the following

equation on the matched sample:

2.3 OLS Results

Before we proceed to our results based on our matched sample, we perform a simple

OLS regression on the unmatched sample. In this procedure, we ignore potential bias

associated with self-selection of utilities to the policy and just controlling for utility- and

time-fixed effects. The results, as presented in Table 4, show that residential customers

experienced an increase in electricity rates following the utility’s adoption of revenue

decoupling. in particular, we find an average increase of about 9% in residential electricity

prices associated with RD implementation. The estimates are very similar whether we

use nominal prices or real prices. The estimated increases in prices are significantly larger

than what the previous studies find, which are based only on the size of the actual RD

adjustment (Morgan, 2013).
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Table 4: The effect of adopting RD on prices, unmatched sample.

Price (real) Price (real)

Log-transformed Levels Log-transformed Levels

(RD=1) 0.09 ** 0.01 * 0.09 ** 0.02 ***
(0.022) (0.059) (0.022) (0.002)

R-sq. (adj.) 0.49 0.40 0.51 0.39
Obs 28877 28953 28877 28953

Time Fixed Effects yes yes yes yes
Utiliy-State Fixed Effects yes yes yes yes

Note: The table shows the result of estimating equation 1 on the unmatched sample. Each column in each
panel is a separate regression for a particular outcome variable. *, **, *** indicate statistical significance at
0.10, 0.05, and 0.01 level, respectively.

2.4 Results from propensity score matching combined with difference-

in-differences

A major issue about the estimated effect presented above is the likelihood that utilities

that become subject to RD may be systematically different from average utilities in the US.

For example, a state in which utilities experience declining sales due to more aggressive

environmental policies may be more inclined to implement RD in order for the utilities to

recover their fixed costs. Thus simply comparing decoupled and non-decoupled utilities

may lead to selection bias.

To account for this potential bias in the estimated effect, we compare treated (i.e., de-

coupled) utilities with those control utilities in the same year-month that had almost iden-

tical level and trend in their real prices (in $/kWh) and sales (in MWh) over the 12-month

period prior to the implementation of RD. The argument is that in the absence of the

policy change, the treated and the control utilities would have behaved similarly, and

that any change in the outcome variables for all treated utilities is attributed to the policy

change. This procedure generates slightly lower and statistically insignificant estimates.

As we explain the mechanism below, RD may have persistent effects on the electric-
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ity prices beyond the immediate impacts due to rate adjustments. To test the hypothesis

that RD impacts may persist over months, we reformulated our method by looking at

the differences between the control and the treated groups in each time period, after RD

implementation, while maintaining to account for time-invariant utility-specific charac-

teristics. The results, as illustrated in Figure 2,8 confirm our hypothesis that the effect

grows over time, reaching to about 18% two years after the implementation of RD.

Figure 2: Estimated effect of implementing RD, matched sample
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8Detailed results are presented in Table F.1
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2.5 Asymmetric price responses to unexpected changes in sales

Decoupling as a mechanism is supposed to work symmetrically over unexpected in-

creases in sales (that should result in downward price adjustments) and unexpected de-

creases in sales (that should result in upward price adjustments). Morgan (2013) reports

that both downward and upward price adjustments have been observed. Here we test

whether decoupling works symmetrically in events of unexpected changes in sales.

We do not have direct observations on the revenue requirements of each utility. To

come up with a proxy for unexpected changes in sales, we first calculated the average

growth rate of the relevant prices over the previous 12 months. We then compare the

calculated growth rates with those of the previous two months. Afterwards, we generate

an indicator variable that turns to unity when the growth rate in the previous 2 months is

higher than the rate over the last 12 months. In other words, our indicator variable turns

on when the actual demand growth is higher than projected.

We then re-estimated equation 1 but this time with additional controls: the above

indicator variable and its interaction with our RD dummy. If RD works symmetrically,

we would expect that the sign of the interaction term would be negative and statistically

significant. That is, utilities are expected to provide rebates to consumers in the form of

lower power rates when actual demand exceeds the projected.

The results are presented in Figure 39. We have two remarkable observations. First,

the difference in the estimated effect between those that had higher-than-projected sales

growth and those that had lower-than-projected sales growth is very minimal and sta-

tistically insignificant. Second, the estimated effect is still positive even for those that

had higher-than-projected sales growth. This implies that, at least, utilities experiencing

unanticipated sales growth would not have price reductions. Furthermore, there seems to

be downward rigidity in electricity prices during periods of unanticipated sales growth

such that the customers would still pay higher prices than those who are served by non-

9Detailed results are presented in Table ??
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Figure 3: Asymmetric price impact of RD, matched sample
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decoupled utilities.

3 Effects of Revenue Decoupling: Theoretical Results

Having established that residential prices had increased after utilities adopted revenue

decoupling, we explain in this section a formal economic model to characterize the mech-

anism behind the estimated effect. We first outline the framework of the model followed

by an analysis on the potential effect of revenue decoupling on retail price and welfare.

3.1 Theoretical Framework

3.1.1 Consumers

There is a continuum of consumers of measure N > 0. Let ui be consumer i’s utility

function. Given total electricity consumption ei and the consumption of numeraire good

yi, the utility is ui(ei, yi) = vi(ei) + yi where v′i > 0 and v′′i < 0.10 This specification, with

10In a later section, we discuss an extension where electricity generation imposes negative externalities
on consumers.
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zero income elasticity of electricity demand, could be justified in light of some recent

empirical findings of zero or very small income elasticity.11

Each household chooses how much electricity to purchase from the utility xi ≥ 0 and

whether to purchase a solar PV (di = 1) or not (di = 0). Upon installing a solar PV,

household i’s solar output is given by gi ≥ 0. We abstract from hourly, day-to-day, and

seasonal variations in load profiles as well as intermittency of solar electricity outputs.

We thus assume grid-supplied electricity (xi) and electricity from distributed sources (gi)

are perfect substitutes: ei = xi + digi. Existence of provisions such as net energy metering

might imply that they are indeed almost perfectly substitutable. As long as they are close

substitutes, the main arguments of this paper would be valid.

We also assume there is no peak-load pricing and consumers face a simple two-part

tariff, with a unit volumetric electricity rate p > 0 and a fixed payment f > 0. Household

i maximizes its utility subject to a budget constraint pxi + f + qdi + yi ≤ mi, where mi > 0

is household i’s income and q the (rental) price of a solar panel.12 The income consists of

wage income (where labor endowment is fixed and its supply is assumed to be inelastic)

and the household’s share of the electric utility’s profits. Thus, household i’s objective

function is given by

max
xi≥0,di∈{0,1}

vi(xi + digi) + yi

s.t. pxi + f + qdi + yi ≤ mi.

The first order condition for utility maximization is given by

v′i(xi + digi) = p, di = 1 if gi ≥ q/p, di = 0 if gi < q/p.

Now suppose that households are ordered in terms of PV output: gi > gj for all i, j ∈
11Reiss and White (2005) estimate the income elasticity for California households to be between -0.01 and

+0.02.
12If xi represents the annual electricity consumption, then q represents the annual rental price of a solar

panel.
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[0, N ] such that i < j. Let h(n) be the total solar output when households 0 to n install

solar panels:

h(n) ≡
∫ n

0

gidi (and hence gn = h′(n)).

Then all households i with ci ≥ q/p install solar panels and the rest do not.

Now, let

v(e) = max
(ei)0≤i≤N

∫ N

0

vi(ei)di s.t.
∫ N

0

ei ≤ e.

By construction, v is concave with v′ > 0, v′′ < 0. The consumers’ utility-maximizing

choice satisfies

∫ N

0

{vi(ei) + yi}di = v(e) +M − fN − p(e− h(n))− qn,

where M ≡
∫ N

0
midi, v′(X) = p and h′(n) = gn = q/p. Therefore, maximizing v subject to

an aggregate budget constraint px+qn+y ≤M yields the households’ utility-maximizing

allocation given p, q. The first-order condition is given by

v′(e) = v′(x+ h(n)) = p; (2)

h′(n) =
q

p
. (3)

Solving these conditions for x and n yields the demand for grid-supplied electricity,

x(p, q), and the demand for solar panels, n(p, q), given the prices p, q.

3.1.2 Electric Utility

Let F > 0 be the fixed cost of providing electricity services (fixed and given at least in the

short run). Though not essential for the analysis, assume that the marginal cost c > 0 is

constant. Thus the utility’s service is subject to increasing returns to scale. The utility’s
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profit can then be expressed as

π = px+Nf − cx− F.

3.1.3 Supply of solar panels

We assume that production of solar panels exhibits constant returns to scale and that the

solar panels are supplied competitively. We could imagine a small open economy, with a

limited option for trading electricity internationally, which faces a constant price of solar

panels q.

3.1.4 Regulation with and without decoupling

We consider two regulatory regimes: (1) traditional rate of return regulation with no rev-

enue decoupling (no RD); and (2) the RD regime. With no RD, the electricity price is held

fixed between rate cases13.

Under RD, the electricity price is allowed to change for the utility to earn a fixed,

pre-approved level of revenue. We assume that the number of customers N , as well as

the fixed fee per customer, f is fixed throughout the analysis. In many cases, the fixed

payment is much smaller than the fixed cost of operating the utility. With F redefined

appropriately, the rest of the analysis assumes away the presence of the term Nf .14

Under the traditional rate-of-return utility regulation, electricity rates are fixed in the

short run at the levels approved by the public utilities commissions (Joskow, 1974).15 We

can write the regulatory constraint as some fixed price that includes the maximum allow-

13Electricity rates are held constant fixed between rate cases, where the utility files before the public
utility commission (PUC) for rate adjustments usually due to changes in operating and maintenance costs
of electric distribution.

14Our focus is on residential electricity markets. We abstract away from electricity markets for industry
and commercial sectors, and cross-subsidization across sectors in electricity pricing—issues to be investi-
gated in future studies.

15Fuel cost adjustments are allowed between rate cases for many utilities, where the rates are adjusted
upon short-term fluctuations in the fuel prices.
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able mark-up over incurred production costs, p̄ :

p̄ ≤ (1 + α)AC = (1 + α)
F + cx

x
.

The utility’s profit is thus given by

π = p̄x(p̄, q)− cx(p̄, q)− F.

We assume that p̄ > c throughout the analysis. This is based on the observation that the

volumetric electricity rates tend to exceed the marginal cost of electricity, and that the

monthly fixed fees for residential electricity are not sufficient to cover the fixed cost of

electricity services (Friedman, 2011). The same has been observed in residential natural

gas markets (Borenstein and Davis, 2012).

While some RD methods include an explicit procedure for changing the level of au-

thorized revenue during years between rate cases, we will only focus on the balancing

accounts that guarantee the exact collection of a fixed authorized revenue for a given

time period.

Let R̄ be the revenue level associated with the initial price level and equilibrium level

of x. In this case the electric rate is adjusted so that the revenue is balanced when demand

changes: R̄ = px(p, q). We can therefore write the utility’s profit as

π = R̄− cx(p, q)− F.

In this representation of an equilibrium between rate cases, the decision of the producer

is limited: given p, q, it supplies output x(p, q).
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3.2 Effects of revenue decoupling

Here we study the effect of an exogenous change in the price (or the cost) of solar panels

q.16 This indicates what would happen to household electricity consumption and welfare

when PV penetration increases as a result of lower costs of PV. We first compare the im-

pacts on electricity price and quantity with and without revenue decoupling to highlight

the potential mechanism at play in relation to the observed increase in retail prices. We

then assess their implications on consumer welfare.

3.2.1 Effects on electricity price and quantity

With no revenue decoupling, the equilibrium condition is given by equations (2) and (3).

With revenue decoupling in place, the necessary and sufficient condition for an (interior)

equilibrium is given by (2) and (3) with px−R̄ = 0. Total differentiation of the equilibrium

conditions in the two cases yield the following proposition about the effect of a decrease in

the cost of solar panels on the equilibrium price and quantity of grid-supplied electricity.

Proposition 1 Without RD, a decrease in the cost of solar panels reduces the equilibrium electric-

ity sales. With RD, a decrease in the cost of solar panels reduces the equilibrium electricity sales,

and increases the electricity price, if and only if the demand for electricity is inelastic (i.e., the price

elasticity is less than one in absolute value).17

Total differentiation of (2) and (3) yields

v′′(x+ h(n))dx+ v′′(x+ h(n))h′(n)dn = 0; (4)

h′′(n)dn =
1

p
dq. (5)

16Between rate cases, the equilibrium outcome is the same with or without revenue decoupling as long
as the utility’s sales volume (x) is the same. Differences arise when the sales change.

17Details of the proof is presented in –.
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From (9), we have dn
dq

= 1
ph′′(n)

< 0. Substitute this into (8) and we obtain

v′′(x+ h(n))
dx

dq
+ v′′(x+ h(n))h′(n)

1

ph′′(n)
= 0. (6)

It follows that

dxnoRD
dq

= − h′(n)

ph′′(n)
> 0, (7)

which implies that, under the traditional rate-of-return regulation, any decrease in the

cost of solar panels reduces the equilibrium output of grid-supplied electricity.

Next we consider the case with RD. Totally differentiate the system (with respect to

endogenous variables x, n, p and an exogenous variable q) and yiels a similar comparative

statics on p:

dpRD
dq

=
−v′v′′h′

D
= −p

x

dx

dq


< 0 if |ηx| < 1;

≥ 0 if |ηx| ≥ 1.

Therefore, in the empirically relevant case with inelastic electricity demand, the grid-

supplied electricity consumption decreases, and the price p increases, as q drops.

To explain how RD impacts electricity prices upon unexpected changes in the sales

of electricity, it is useful to consider the demand for electricity as well as the supply and

the demand of investment in energy efficiency (such as energy-efficient appliances and

solar panels). Suppose that there is a supply shock to energy-efficiency investment due

to technological innovation (lowering the costs) or policies to encourage such investment

(increasing the demand). The induced increase in energy-efficiency investment reduces

the demand for electricity. Without RD, the price would stay at the initial level. With RD,

the retail electricity price is adjusted upwards (as long as the price elasticity of demand is

less than one in absolute value). This is the immediate price impact of RD. However, the

increase in electricity price raises the demand for energy efficiency. This secondary impact
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shifts the demand for electricity further, thereby raising the electricity price further under

RD. This explains the positive effect of RD on electricity prices over months after RD

implementation (Figure 1).

4 Discussion

Several U.S. states adopted revenue decoupling as one of the many policy measures to

provide utilities with incentives to invest in energy efficiency and conservation. Whether

decoupling improves efficiency of the electricity sector has been a subject of debate (Kihm,

2009; Brennan, 2010; Morgan, 2013), but few studies have investigated the policy’s welfare

property theoretically and empirically. By combining the empirical evidence with a for-

mal economic model, we demonstrate below the potential welfare consequences of RD as

it links with several pressing welfare issues in the US residential electricity consumption.

The detailed theoretical exposition is found in Appendices.

Effect when combined with increased subsidies for distributed generation or energy

efficiency. The United States government provides federal tax credits for consumer en-

ergy efficiency including investment in solar panels. Many U.S. states also offer state-level

tax credits for installing solar panels. For qualified households, these tax credits work

as a subsidy for installing solar panels. We examined how the adoption of RD impacts

households when the implied subsidies increased. Our model reveals that RD amplifies

the negative welfare impact of solar subsidies (see Appendix B) through an increase in

the unit price of electricity distributed through the grid and the corresponding consumer

adjustments for grid-supplied electricity. Under the non-RD regime, an increase in the

amount of subsidy, say for solar panels, will create (1) excess burden for a subsidy (called

the ‘primary welfare effect’ (Goulder and Williams, 2003)) and (2) the ‘electricity mark up

effect’, which is an extra distortion on the use of grid-supplied electricity when price ex-
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ceeds the marginal costs. Both of these distortionary effects are exacerbated under the RD

regime.

Potential Distributional Effect. We also examined how the adoption of revenue de-

coupling impacts households with and without distributed generation (or solar panels,

Supplementary Section Appendix D). We find that RD will unambiguously benefit those

high-income households that can afford to install capital-intensive solar panels and en-

ergy efficiency, but adversely affect low-income households that do not. Given inelastic

demand for electricity, low-income and presumably credit-constrained households would

be adversely affected by the increase in price. This finding is in line with earlier studies

that find policies that reduce the cost of solar panels, including production subsidies and

tax credits, are generally regressive.??

Precise welfare expressions would include the share of profits of the utility for each

consumer. Because the profit is increasing in a drop in the cost of solar panels or energy

efficiency and in the subsidy under RD, this consideration tends to increase the welfare

impacts on those with solar panels, and may alleviate the negative welfare impacts on

those without solar panels.

Effect of Uncertainty. We consider uncertainty regarding output from solar panels in

order to examine how the associated risk is shared between consumers and the utility

under the alternative regulation (Appendix E). We find that, without RD, any increase in

the degree of uncertainty regarding output from solar panels will not change the utility’s

equilibrium profits nor the consumers’ equilibrium expected utility. With RD in place, an

increase in the degree of uncertainty will result in an increase in the expected profits of

the utility and a decrease in consumers’ equilibrium expected utility. Taken together, the

results imply that the demand-based risk burden shifts from the utility to the consumers

when RD is in place.

Potential welfare effects. Economic efficiency, which incorporates the pollution exter-
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nalities of electricity generation, implies that the retail prices should be set equal to the

social marginal cost (SMC) of electricity services. Increases in electricity prices would

lead to lower consumer surplus, but whether it induces negative welfare impacts is not

clear once we take into account negative externalities associated with utility-scale elec-

tricity generation (damages due to emissions of CO2 and other air pollution from fossil

fuel combustion). On the one hand, under conventional pricing, the electricity price tends

to exceed the (private) marginal costs of electricity generation. As discussed earlier, this

implies that RD amplifies the distortionary impacts of above-marginal-cost pricing. On

the other hand, if the social marginal costs (i.e., including the marginal external costs of

electricity generation based on fossil fuel) exceed the retail electricity price, then a price

increase due to RD would make the price closer to SMC and generate positive welfare

impacts.

A recent paper by Bushnell and Borenstein? reveals that, in most of the states that

have adopted RD, the marginal price exceeds SMC. To the extent that the price-SMC re-

lationship does not change significantly in the period 2000-2012, this finding indicates

that RD tends to generate negative welfare impacts for most states that implemented this

policy. This is particularly true for states like California, New York, and Massachusetts

where electricity prices exceed SMC. Over time, the grids can become more efficient and

cleaner across states. Coupled with RD, these additional investments may necessitate fur-

ther increases in prices. Therefore, such changes in the grids may magnify the negative

welfare effects of RD.

Moving forward: Flat Distribution. The empirical evidence and the policy insights pre-

sented above suggest that the current design of RD for electric utilities is not the ideal

policy provision to enhance efficiency of the electricity sector nor resort to more renew-

able energy in the form of distributed power. The question remains: what alternatives

would be more efficient while aligning electricity utilities’ incentives with societal goals?

There are two main types of designing RD for public utilities. The first one, which
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is discussed here, applies frequent true-ups on volumetric rates to ensure that the util-

ity’s actual revenue is equal to its revenue requirement. The second one, called the

straight-fixed variable (SFV) rate design, sets fixed charges (such as the monthly customer

charge) to recover the full fixed costs of service delivery while variable costs are recov-

ered through variable charges. At the moment, the second type of RD is more common

in natural gas than in electric utilities (Lazar, 2015).

Covering revenue shortfalls through the SFV does not come without costs. These costs

include the potential increase in consumption with lower volumetric charges and possible

distributional concerns when low-earning households would pay fixed monthly charges

similar to high-income earners. While our analysis does not promote the use of fixed cost

to cover the entire revenue shortfall, we argue, based on the evidence presented above,

that fixed charges can be used to cover at least part of the shortfall. Doing so may prevent

electricity prices to be so high to increase distortions in the markets for electricity and

energy efficiency.
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Appendix A Effects of changes in the cost of solar panels

Effect on equilibrium price and quantity (Proof of Proposition 1)

Proof. Total differentiation of (2) and (3) yields

v′′(x+ h(n))dx+ v′′(x+ h(n))h′(n)dn = 0; (8)

h′′(n)dn =
1

p
dq. (9)

From (9), we have dn
dq

= 1
ph′′(n)

< 0. Substitute this into (8) and we obtain

v′′(x+ h(n))
dx

dq
+ v′′(x+ h(n))h′(n)

1

ph′′(n)
= 0. (10)

It follows that

dxnoRD
dq

= − h′(n)

ph′′(n)
> 0, (11)

which implies that, under the traditional rate-of-return regulation, any decrease in the

cost of solar panels reduces the equilibrium output of grid-supplied electricity.

Next we consider the case with RD. Totally differentiate the system (with respect to

endogenous variables x, n, p and an exogenous variable q) and obtain


v′′ −1 v′′h′

v′′h′ 0 v′′(h′)2 + v′h′′

p x 0




dx
dq

dp
dq

dn
dq

 =


0

1

0

 . (12)

Hence, we have
dxRD
dq

=
v′′h′x

D
,
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where

D ≡

∣∣∣∣∣∣∣∣∣∣
v′′ −1 v′′h′

v′′h′ 0 v′′(h′)2 + v′h′′

p x 0

∣∣∣∣∣∣∣∣∣∣
= −v′{v′′(h′)2 + v′h′′} − v′v′′h′′x.

To evaluate these expressions, we derive the price elasticities of demand for electricity

and solar panels. Totally differentiate the first order conditions for the consumer’s utility

maximization (2) and (3) (with respect to x, n and p) to obtain

 v′′ v′′h′

v′′h v′′(h′)2 + v′h′′


 ∂x

∂p

∂n
∂p

 =

1

0

 . (13)

Thus we have ∂x
∂p

= v′′(h′)2+v′h′′

v′h′′v′′
and hence the price elasticity of demand for utility-generated

electricity satisfies

ηx ≡
∂x

∂p

p

x
=
v′′(h′)2 + v′h′′

v′′h′′x
< 0.

Plugging the above elasticity in to dxRD/dq yields

dxRD
dq

=
v′′h′x
xv′h′′v′′

−v′′(h′)2+v′h′′

v′′xh′′
− 1

=
− h′

v′h′′

1 + ηx


> 0 if |ηx| < 1;

≤ 0 if |ηx| ≥ 1.
(14)

A similar comparative statics on p yields

dpRD
dq

=
−v′v′′h′

D
= −p

x

dx

dq


< 0 if |ηx| < 1;

≥ 0 if |ηx| ≥ 1.

Therefore, in the empirically relevant case with inelastic electricity demand, the grid-

supplied electricity consumption decreases, and the price p increases, as q drops.
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Effects on welfare

Now we turn to the welfare effects with and without RD. We assume that the utility’s

profit is returned to consumers as dividends: household i receives a profit share siπ where

si ≥ 0 for all i and
∫ N

0
sidi = 1. Let Wr denote the representative consumer’s welfare

under policy regime r (r ∈ {RD, noRD}). In the absence of distortions other than the

markup in electricity pricing, the welfare is given by

Wr = u(xr + h(nr))− prxr − qnr + [pxr − cxr − F ] = u(xr + h(nr))− cxr − qnr − F.

Under traditional rate-of-return regulation with no revenue decoupling, we have:

dWnoRD

dq
= v′

dxnoRD
dq

+ v′h′
dnnoRD
dq

− n− qdnnoRD
dq

− cdxnoRD
dq

= (p̄− c)dxnoRD
dq

− nnoRD.

If p̄ is set close enough to c, the welfare is expected to increase as q declines. However,

with a sufficiently large markup, the welfare may decrease as q drops.

Under revenue decoupling, we have:

dWRD

dq
= (p̄− c)dxRD

dp
− nRD.

Consider the case where |ηx| < 1. It follows from (11) and (14) in the proof of Proposition

1 that
dxRD
dq

=
1

1− |ηx|
dxnoRD
dq

>
dxnoRD
dq

.

This implies that, with revenue decoupling, the negative effect of a decrease in q on to-

tal welfare is exacerbated by the amount of consumer adjustment for x if the electricity

demand is inelastic.

Proposition 2 Without revenue decoupling, the total economic welfare increases as the cost of
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installing solar panels goes down, provided ∂π
∂q

is sufficiently low (or if p̄ is set close enough to c).

Under revenue decoupling, the negative effect of a decrease in q on total welfare is exacerbated by

the amount of consumer adjustment for x, provided that the electricity demand is inelastic.

Appendix B Changes in the subsidy for solar installation

With subsidy s > 0 per unit of solar panel, the consumer price of solar panels is given by

q̄ = q − s.

Effects on electricity price and quantity

Without revenue decoupling, the interior equilibrium satisfies (2) and (3) with p = p̄.

Under revenue decoupling, the interior equilibrium satisfies (2), (3) and

px− R̄ = 0.

The effect of an increase in the solar subsidy on electricity prices and quantities is the

same as that of a decline in the cost of solar panels.

Proposition 3 Without RD, an increase in the subsidy for solar panels reduces the equilibrium

electricity sales. With RD, an increase in the subsidy for solar panels reduces the equilibrium

electricity sales, and increases the electricity price, if and only if the demand for electricity is

inelastic.

Proof. For the case with no RD, a simple modification of the analysis in section 3.2.1

yields

dxnoRD
ds

=
h′(n)

ph′′(n)
< 0.

For the case with RD, totally differentiate the system (with respect to endogenous
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variables x, n, p and an exogenous variable s) and obtain


v′′ −1 v′′h′

v′′h′ 0 v′′(h′)2 + v′h′′

p x 0




dx
ds

dp
ds

dn
ds

 =


0

−1

0

 .

Hence, we have

dxRD
ds

=
−v′′h′x
D

=
h′

v′h′′

1 + ηx


< 0 if |ηx| < 1;

≥ 0 if |ηx| ≥ 1.
,

where D is as defined in section 3.2.1. A similar comparative statics on p yields

dpRD
ds

=
v′v′′h′

D
= −p

x

dx

dq


> 0 if |ηx| < 1;

≤ 0 if |ηx| ≥ 1.

Effects on welfare

Under solar subsidy with policy regime r, the welfare is given by

Wr = u(xr + h(nr))− pxr − q̄nr + [pxr − cxr − F ]− snr = u(xr + h(nr))− cxr − qnr − F,

where q̄ = q − s. Differentiate the above expression with respect to s:

dWr

ds
= v′(xr + h(nr))

{
dxr
ds

+ h′(nr)
dnr
ds

}
− cdxr

ds
− qdnr

ds

= (p− c)dxr
ds

+ v′(xr + h(nr))h
′(nr)

dnr
ds
− qdnr

ds
= (p− c)dxr

ds
− sdnr

ds
.

A6



With no revenue decoupling, we obtain the following intuitive expression:

dWnoRD

ds
= −(p− c)ηx,q

x

q̄
+ sηn

n

q̄
, (15)

where ηx,q is the cross-price elasticity of the demand for electricity with respect to the

price of solar panels. The second term is the usual Harberger excess burden formula for a

subsidy (called the ‘primary welfare effect’ (Goulder and Williams, 2003). The first term,

which would not exist under marginal-cost (or competitive) pricing with p = c, captures

the effect of a solar subsidy on the demand for solar panels (due to an increase in solar

subsidies). We call this the ‘electricity markup effect.’ To the extent that the electricity

price exceeds the marginal cost, the subsidy on solar panels generates an extra distortion

on the use of grid-supplied electricity.

Next, we consider the welfare impact under revenue decoupling. It follows from (??)

that
dWRD

ds
= (p− c)dxRD

ds
− sdnRD

ds
.

The appendix shows that we can rewrite the expression to the following:

dWRD

ds
= −(p− c) ηx,q

1− |ηx|
x

q̄
+ s
−
{
−ηx + ηn

qn
px

}
ηn

n
q

1− |ηx|
+ s
−|ηn|nq
1− |ηx|

. (16)

The above formula reveals how revenue decoupling amplifies the welfare impact of solar

subsidies. The first and the third terms (the electricity markup effect and the primary wel-

fare effect) are negative while the second term is positive. The third term represents the

usual Harberger excess burden formula for a subsidy, but it is multiplied by 1/(1 − |ηx|).

The first term was also present in the absence of decoupling, but is also now multiplied

by 1/(1− |ηx|). The second term is positive, but the sum of the second and the third term

is negative. The second term is likely smaller in magnitude than the first and the third

term because it involves a product of elasticities on the numerator. Therefore, depending
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on the size of the price elasticity of electricity demand, revenue decoupling exacerbates

the excess burden due to solar subsidies.

Proposition 4 With no revenue decoupling, the excess burden due to an increase in the subsidy

on solar panels exceeds the primary welfare effect due to a markup in electricity pricing. Under rev-

enue decoupling, both the primary welfare effect and the electricity markup effect are exacerbated

when demand is inelastic.

Proof.

With no RD,
dWnoRD

ds
= (p− c) h

′(n)

ph′′(n)
− s −1

ph′′(n)
< 0.

To interpret this expression, note that h′(n)
ph′′(n)

= −ηx,q xq̄ < 0 and −1
ph′′(n)

= −ηn nq̄ > 0. This

yields equation (15).

With RD, the first term on the right-hand side of

dWRD

ds
= (p− c)dxRD

ds
− sdnRD

ds

reduces to

(p− c)dxRD
ds

= (p− c)−v
′′h′x

D
= (p− c)

h′

v′h′′

1 + ηx
= −(p− c) ηx,q

1− |ηx|
x

q̄
.

The second term satisfies

dnRD
ds

=
p+ v′′x

D
=

(p+ v′′x)/(xv′v′′h′′)

D/(xv′v′′h′′)
=

p
xv′v′′h′′

+ v′′x
xv′v′′h′′

−v′{v′′(h′)2+v′h′′}
xv′v′′h′′

− v′v′′h′′x
xv′v′′h′′

=
− 1
xv′′h′′

1 + ηx
−

dn
dq

q
n
n
q

1 + ηx
=
− 1
xv′′h′′

1− |ηx|
−

ηn
n
q

1− |ηx|
.
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To evaluate the numerator of the first term − 1
xv′′h′′

, note that

∂x

∂p
=
v′′(h′)2 + v′h′′

v′h′′v′′
=

(h′)2

v′h′′
+

1

v′′
,

where h′(n) = q/p. and 1
v′h′′

= ∂n
∂q

. Thus

1

v′′
=
∂x

∂p
− ∂n

∂q

(
q

p

)2

.

We also have 1
h′′

= ∂n
∂q
p. Hence,

− 1

xv′′h′′
= −

{
∂x

∂p

1

x
− ∂n

∂q

(
q

p

)2
1

x

}
∂n

∂q
p = −

{
∂x

∂p

p

x
− ∂n

∂q

q

n

n

q

(
q

p

)2
p

x

}
∂n

∂q

q

n

n

q

= −
{
−ηx + ηn

qn

px

}
(−1)ηn

n

q
=

{
−ηx + ηn

qn

px

}
ηn
n

q
(< 0).

From (13), we have ∂n
∂p

= −v′′h′
v′h′′v′′

= − h′

ph′′
. Hence

ηn,p ≡
dn

dp

p

n
= − h′

ph′′
p

n
> 0

is the cross-price elasticity of the demand for solar panels with respect to electricity price.

Therefore, the welfare impact of a marginal increase in the solar subsidy is given by equa-

tion 16.

Appendix C Externalities of electricity generation

We describe how the analysis changes if we assume that the utility’s electricity services

involve negative externalities due to fossil fuel use for electricity generation. Let δ > 0

represent the marginal external damages associated with the production and delivery

of grid-supplied electricity x. We assume that, in the absence of emissions prices, each

household does not take into account the external effects of its consumption. The welfare
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expression under no RD is given by

WnonRD = v(x(p̄, q) + h(n(p̄, q)))− qn(p̄, q)− cx(p̄, q)− F − δ(x(p̄, q)).

Under RD, the welfare is now expressed as:

WRD = v(x(p, q) + h(n))− cx(p, q)− F − δx(p, q)

Therefore,

dWnonRD

dq
= v′

dx

dq
+ v′h′

dn

dq
− n− qdn

dq
− cdx

dq
− δ∂x

∂q

= (p̄− c− δ)∂x
∂q
− n

under no RD while

dWRD

dq
=

(
[v′ − c− e] ∂x

∂p

dp

dq
+
∂x

∂q

)
− n

holds under RD. To the extent that the markup p− c exceeds the marginal external dam-

ages δ, the qualitative results are the same as in the previous section.

We now discuss additional results regarding the distributional impacts of decoupling

on households with different income levels (and different propensity to purchase solar

panels) as well as the effects of decoupling on risk allocations between electricity con-

sumers and producers when there is uncertainty about electricity generation from renew-

able energy sources.
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Appendix D Distributional Impacts of Decoupling

We evaluate the distributional impacts of changes in q (or subsidy if that is what underlies

the change in q̄).

Proposition 5 Under RD, a decrease in the cost of solar panels (due to technological improvement

or government subsidy) is welfare-improving to those consumers who install solar panels, and

welfare-reducing to those who did not install solar panels.

Proof. For those without solar panels, we have

dui
dq

=
d

dq
{vi(xi)−mi − pxi} = −dp

dq
xi > 0,

when demand is inelastic. (The equality follows from the envelope theorem.)

For those with solar panels, we have

dui
dq

=
d

dq
{vi(xi + gi)−mi − pxi − q} = −dp

dq
xi − 1

Note that dp
dq

=
−p ∂x

∂q

x(1−|ηx)| .

Therefore,

dui
dq

=
−p∂x

∂q
− 1 + |ηx|

(1− |ηx)|

< 0 if |ηx| < 1.

Precise welfare expressions would include the share of profits of the utility for each con-

sumer. Because the profit is increasing in a (drop in) q̄ and in the subsidy under RD, this

consideration tends to increase the welfare impacts on those with solar panels, and may

alleviate the negative welfare impacts on those without solar panels.
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Appendix E Decoupling under uncertainty

Here we provide an extensions of the model to incorporate uncertainty associated with

distributed generation.

Here we consider uncertainty regarding output from solar panels in order to examine

how the associated risk is shared between consumers and the utility under the alternative

regulation. Given installation n, suppose the output from distributed generation is given

by

xd = θh(n),

where θ is a random variable with a set of nonnegative realizations {θs}, s ∈ S, such

that Eθ = θ̄. The household chooses n before uncertainty is realized and chooses how

much electricity to buy from the utility upon realization of uncertainty, i.e., it chooses a

state-contingent electricity consumption plan.

The household’s problem is

max
{xs}s∈S ,n

E[u(e, y)]

subject to

es = xs + θsh(n), xs ≥ 0, psxs + qn+ ys ≤M for each s ∈ S.

The objective function in this case is

E[v(x+ θh(n))− px] +M − qn.

The first order conditions for an interior solution are

v′(xs + θsh(n)) = ps for all s ∈ S,

E[v′(x+ θh(n))θ]h′(n) = q.
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Proposition 6 Without revenue decoupling, any increase in the variance of θ will not change the

utility’s equilibrium expected profits.

Proof. The utility’s expected profit under uncertainty without RD can be expressed as:

E[π] = E[p̄x− c̄x]

= (p̄− c̄)E[x].

Without RD, The electricity price is fixed irrespective of the realization of uncertainty.

Note that under this regulatory scheme, consumer demand satisfies v′(e∗s) = p̄ for all s,

i.e., e∗s = e∗ for all s. This implies that:

e∗ = xs + θsh(n), ∀s ∈ S. (17)

Note further that E[θh(n)] = θ̄h(n) because E[θs] = θ̄. Therefore,

E[π] = E[(p̄− c)(e∗ − θh(n))] = (p̄− c̄)[e∗ − E(θ)h(n)]

= (p̄− c)[e∗ − θ̄h(n)],

which is independent of the variance of θ.

To evaluate the effect of uncertainty under revenue decoupling, we assume that (with

slight abuse of notation) S = {1, 2}, θ1 = θ + ε, θ2 = θ − ε, with p1 = p2 = 1/2, where

ε ∈ (0, θ).

Proposition 7 With revenue decoupling in place, an increase in the variance of θ will result in

an increase in the expected profits of the utility.

Proof. With RD, the utility’s expected profit is now expressed as:

E[π] = E[R̄− c̄xs] (18)
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Evaluate the derivative of (18) with respect to ε to obtain

dE[π]

dε
= −c̄E[

dx

dε
].

To evaluate dx
dε

, take the derivative of the consumer’s expected utility with respect to ε:

dE[U ]

dε
= E

[
v′(Xs)

{
dxus
dε

+
dθs
dε
h(n)

}]
= E

[
R

xs

{
dxus
dε

+
dθs
dε
h(n)

}]

Total differentiation of the first-order condition for the consumer’s utility maximization,

v′(xs + θsh(n)) = R
xs

for s = 1, 2, yields

(
v′′ +

R

(x1)2

)
dx1 + v′′(θ − ε)h′(n)dn = v′′h(n)dε (19)(

v′′ +
R

(x2)2

)
dx2 + v′′(θ + ε)h′(n)dn = −v′′h(n)dε (20)

Utility maximization also implies E[v′θs]h
′(n) = q. Thus

∑
s

πs[v
′(xs + θsh(n))θs] =

q

h′(n)

Totally differentiating the above conditions and manipulating terms, we obtain

1

2
[v′′(θ − ε)dx1 + v′′(θ + ε)dx2] +

[
v′′h(n)[(θ2 + ε2) +

q

h′(n)2
h′′(n)

]
dn

=

[
−v′′h(n)ε+

1

2
[v′1 − v′2]

]
dε (21)

where v′1 ≡ v′(e1), v′2 ≡ v′(e2). Solving for dE[U ]
dε

will entail solving (19), (20), and (21) in a

system of equations. Re-writing the problem into a matrix form will yield the following:
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
v′′ + R

(x1)2
0 v′′(θ − ε)h′(n)

0 v′′ + R
(x2)2

v′′(θ + ε)h′(n)

1
2
v′′(θ − ε) 1

2
v′′(θ + ε) v′′h′(n)(θ2 + ε2) + q

h′(n)2
h′′(n)




dx1
dε

dx2
dε

dn
dε

 =


v′′h(n)

−v′′h(n)

−v′′h(n) + 1
2
[v′1 − v′2]ε


LetDA be the determinant of the coefficient matrix andDxi be the determinant formed

by replacing the ith column of the matrix on the left-hand side with the vector on the left-

hand side. Applying Cramer’s Rule, we can compute for dx1
dε

by:

dx1

dε
=
Dx1

DA

Where:

Dx1 = det


v′′h(n) 0 v′′(θ − ε)h′(n)

−v′′h(n) v′′ + R
(x2)2

v′′(θ + ε)h′(n)

−v′′h(n)ε+ 1
2
[v′1 − v′2] 1

2
v′′(θ + ε) v′′h′(n)(θ2 + ε2) + q

h′(n)2
h′′(n)

 ,

DA = det


v′′ + R

(x1)2
0 v′′(θ − ε)h′(n)

0 v′′ + R
(x2)2

v′′(θ + ε)h′(n)

1
2
v′′(θ − ε) 1

2
v′′(θ + ε) v′′h′(n)(θ2 + ε2) + q

h′(n)2
h′′(n)

 .
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To show that E
[
dxs
dε

]
< 0 when DA < 0, we note that:

E

[
dxs
dε

]
=

1

2DA

[
R

(x2)2
(v′′)2h′hθ(θ + ε) +

(
v′′ +

R

(x2)2

)
v′′hq

h′′

h′2

]
+

1

2DA

[
−1

2
(v′1 − v′2)(v′′ +

R

(x2)2
)(v′′(θ − ε)h′)

]
+

1

2DA

[
− R

(x1)2
(v′′)2h′hθ(θ − ε)−

(
v′′ +

R

(x1)2

)
v′′hq

h′′

h′2

]
+

1

2DA

[
−1

2
(v′1 − v′2)(v′′ +

R

(x1)2
)(v′′(θ + ε)h′)

]
.

Note that terms in the square brackets can be expressed as:

=

[
p2

x2

(θ + ε)− p1

x1

(θ − ε)
]
v′′h′hθ (22)

+

[
p2

x2

− p1

x1

]
v′′hq

h′′

h′2
(23)

+

[(
v′′ +

R

(x2)2

)
(θ − ε) +

(
v′′ +

R

(x1)2

)
(θ + ε)

] [
−1

2
(v′1 − v′2)v′′h′

]
. (24)

Here (22) is positive since p2
x2
> p1

x1
(note that p1 < p2 and x1 > xU2 ) and (θ+ ε) > (θ− ε).

For the same reason, (23) is positive. For (24), we assume that (v′′ + R
xs

) < 0 which makes

the sum of the terms in the first bracket to be negative. Since p1 < p2, the term outside

the bracket is negative. This makes the whole expression negative. Overall, E
[
dxs
dε

]
< 0

when DA < 0. Therefore, E[π] > 0 when DA < 0.

Proposition 8 With no RD, an increase in the variance of θ (i.e., having a mean-preserving

spread of θ) does not change the household’s equilibrium expected utility.

Proof. Under traditional regulation, we have ps = p̄ for all s ∈ S: between rate cases, the

electricity price is fixed irrespective of the realization of uncertainty. In this case, we have

es = es′ = e∗for all s, s′ ∈ S,

where, e∗ solves v′(e∗) = p̄, and p̄θ̄h′(n) = q; i.e. h′(n) = q
p̄θ̄

, where θ̄ ≡ E[θ]. In this case,
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the household’s utility satisfies

E[v(e∗) +M − p̄{e∗ − θh(n∗)}]− qn∗ = v(e∗) +M − p̄[e∗ − θ̄h(n∗)]− qn∗.

Note that e∗ and n∗ are independent of the variance of θ. Hence, a change in the variance

of θs has no effect on the household’s equilibrium expected utility.18

Proposition 9 Under RD, an increase in the variance of θ (or, equivalently, an increase in ε)

reduces the expected utility of consumers.

Proof. Evaluate DA as defined in the previous proof:

DA =

(
v′′ +

R

(x1)2

)(
v′′ +

R

(x2)2

)(
v′′h′(n)(θ2 + ε2) +

q

h′(n)2
h′′(n)

)
−
(

1

2
v′′(θ − ε)

)(
v′′ +

R

(x2)2

)
(v′′(θ − ε)h′(n))

−
(

1

2
v′′(θ + ε)

)
(v′′(θ + ε)h′(n))

(
v′′ +

R

(x2
1)2

)
.

Note that DA can be simplified:

DA = 0.5

(
v′′ +

R̄

(x1)2

)[
R̄

(x2)2
v′′h′(θ + ε)2 +

(
v′′ +

R̄

(x2)2

)
v′(X2)(θ + ε)h′′/h′

]
+ 0.5

(
v′′ +

R̄

(x2)2

)[
R̄

(x1)2
v′′h′(θ − ε)2 +

(
v′′ +

R̄

(x1)2

)
v′(X1)(θ − ε)h′′/h′

]
. (25)

Note that (xs)(v
′′ + R

(xs)2
) = p′sxs + ps = MRs. When demand is inelastic, MR is negative

because to sell a marginal (infinitesimal) unit the firm would have to lower the selling

price so much that it would lose more revenue on the pre-existing units than it would

gain on the incremental unit. Thus, under inelastic demand, v′′ + R
(x1)2

< 0 (because

x1 > 0).
18This result is due to the quasilinearity assumption on the utility function, i.e., no income effects. If

the household’s utility depends nonlinearly on y, then an increase in the variance of θ may impact the
household’s utility.
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For Dx1:

Dx1 =
R

(x2)2
(v′′)2hh′θ(θ + ε) +

(
v′′ +

R̄

(x2)2

)
v′′hq

h′′

h′2

−
(

1

2
(v′1 − v′2)

)(
v′′ +

R

(x2)2

)
(v′′(θ − ε)h′) (26)

Applying the same method above, we can compute for dx2
dε

by applying dx2
dε

= Dx2

DA
, where

Dx2 = det


v′′ + R

(x1)2
v′′h(n) v′′(θ − ε)h′(n)

0 −v′′h(n) v′′(θ + ε)h′(n)

1
2
v′′(θ − ε) −v′′h(n)ε+ 1

2
[V ′1 − V ′2 ] v′′h′(n)(θ2 + ε2) + q

h′(n)2
h′′(n)


As for Dx2, we have

Dx2 = − R

(x1)2
(v′′)2hh′θ(θ − ε)−

(
v′′ +

R

(x1)2

)
v′′hq

h′′

h′2

−
(

1

2
(v′1 − v′2)

)(
v′′ +

R

(x1)2

)
(v′′(θ + ε)h′). (27)

Now evaluate dEU
dε

:

dEU

dε
= E

[
R

xs

(
dxus
dε

+
dθs
dε
h(n)

)]
= E

[
R

xs

dxus
dε

]
+ E

[
v′(Xs)

dθs
dε
h(n)

]
, (28)

where dxus
dε

= Dxs

DA
.
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We first evaluate the E
[
R
xs

dxus
dε

]
by substituting (26) and (27) into dxus

dε
:

E

[
R

xs

dxus
dε

]
=

R̄

2DAxu1x
u
2

[
p2(v′′)2h′hθ(θ + ε) + x2

(
v′′ +

R̄

(x2)2

)(
v′′hq

h′′

h′2

)]
+

R̄

2DAxu1x
u
2

[
−1

2
(v′1 − v′2)x2

(
v′′ +

R̄

(x2)2

)
(v′′(θ − ε)h′)

]
+

R̄

2DAxu1x
u
2

[
−p1(v′′)2h′hθ(θ − ε)− x1

(
v′′ +

R̄

(x1)2

)(
v′′hq

h′′

h′2

)]
+

R̄

2DAxu1x
u
2

[
−1

2
(v′1 − v′2)x1

(
v′′ +

R̄

(x1)2

)
(v′′(θ + ε)h′)

]
,

where the expressions inside the square brackets are all equal to

[p2(θ + ε)− p1(θ − ε)] (v′′)2h′hθ (29)

+

[
xu2

(
v′′ +

R̄

(x2)2

)
− xu1

(
v′′ +

R̄

(x1)2

)]
v′′hq

h′′

h′2
(30)

+

[
xu2

(
v′′ +

R̄

(x2)2

)
(θ − ε) + xu1

(
v′′ +

R̄

(x1)2

)
(θ + ε)

](
−1

2

)
(v′1 − v′2)v′′h′. (31)

We will show that the terms (29) - (31) are all positive. Given n > 0, we have xu1 > xu2

and p1 < p2. The first order condition for xs satisfies

v′(xs + θsh) = ps = R/xs.

Totally differentiate both sides with respect to xs and θs:

v′′dxs + v′′hdθs = −Rx−2
s dxs, i.e.,

∂xs
∂θs

=
−v′′h
v′′ + R

x2s

.

The last expression is negative when v′′+ R
x2s
< 0. Because θ1 = θ− ε < θ+ ε = θ2, we have

xu1 > xu2 and p1 < p2.

The term (29) is positive because p1 < p2 and θ − ε < θ + ε while term (30) implies

[v′′(x2 − x1) + (p2 − p1)]v′′hq h
′′

h′2
> 0. Term (31) is positive when v′′ + R

x2s
< 0. Therefore,
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dxs
dε
< 0 if DA < 0.

Next, we can evaluate the last term of equation (28).

E[v′
dθs
dε
h] =

1

2
[v′1(−h)− v′2(h)]

=
1

2
[p2 − p1]h > 0.

Therefore, we need to evaluate the sum of the two terms in (28).

dEU

dε
= E[v′

dxs
dε

] + E[v′
dθs
dε
h] = E[v′

dxs
dε

] +DA(x1 − x2)h.

We also have

DA(x1 − x2)h

=
1

2

[(
v′′ +

R

(xU1 )2

)
R

(xU2 )2
v′′h′(θ + ε)2 +

(
v′′ +

R

(xU2 )2

)
R

(xU1 )2
v′′h′(θ − ε)2

]
(x1 − x2)h

(32)

− 1

2
x2

(
v′′ +

R

(xU1 )2

)(
v′′ +

R

(xU2 )2

)
hq
h′′

h′2
+

1

2
x1

(
v′′ +

R

(xU1 )2

)(
v′′ +

R

(xU2 )2

)
hq
h′′

h′2
. (33)

We can verify that (32) is positive. If we sum up (30) and (33), we have:

Eqs. (30) + (33) = x2

(
v′′ +

R

(xU2 )2

)
hq
h′′

h′2

[
v′′ − 1

2

(
v′′ +

R

(xU1 )2

)]
− x1

(
v′′ +

R

(xU1 )2

)
hq
h′′

h′2

[
v′′ − 1

2

(
v′′ +

R

(x2)2

)]
=

1

2
hq
h′′

h′2

[
(v′′)2x2 + v′′

R

x2

− v′′ R
x1

+
R

x1x2

]
− 1

2
hq
h′′

h′2

[
(v′′)2x1 + v′′

R

x1

− v′′ R
x1

+
R

x1x2

]
=

1

2
hq
h′′

h′2
[
(v′′)2(x2 − x1) + v′′(p2 − p1)

]
> 0. (34)
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It follows from θ1 = θ − ε < θ + ε = θ2 that x1 > x2 → p1 < p2. Therefore, we conclude

that dEU
dε

< 0 if DA < 0.

To show DA < 0, we totally differentiate the FOCs with respect to xu1 , x
u
2 , n, p1, and

divide both sides by dp1:


v′′ 0 v′′(θ − ε)h′(n)

0 v′′ v′′(θ + ε)h′(n)

1
2
v′′(θ − ε) 1

2
v′′(θ + ε) v′′h′(n)(θ2 + ε2) + q h

′′(n)
h′(n)2




dx1
dp1

dx2
dp1

dn
dp1

 =


1

0

0

 .

Let dxu1
dp1

= Dx1
Du

, where

Dx1 = det


1 0 v′′(θ − ε)h′(n)

0 v′′ v′′(θ + ε)h′(n)

0 1
2
v′′(θ + ε) v′′h′(n)(θ2 + ε2) + q h

′′(n)
h′(n)2

 ,

Du = det


v′′ 0 v′′(θ − ε)h′(n)

0 v′′ v′′(θ + ε)h′(n)

1
2
v′′(θ − ε) 1

2
v′′(θ + ε) v′′h′(n)(θ2 + ε2) + q h

′′(n)
h′(n)2

 .
Solving for Dx1 yields:

Dx1 = v′′
[
v′′h′(θ2 + ε2) + q

h′′

(h′)2

]
− 1

2
(v′′)2(θ + ε)2h′. (35)

As for Du, we have

Du = (v′′)2

[
v′′h′(θ2 + ε2) + q

h′′

(h′)2

]
− 1

2
(v′′)3(θ − ε)2h′ − 1

2
(v′′)3(θ + ε)2h′ = (v′′)2q

h′′

(h′)2
.
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Thus, we can express dxu1
dp1

as:

dxu1
dp1

=
v′′
[
v′′h′(θ2 + ε2) + q h′′

(h′)2

]
− 1

2
(v′′)2(θ + ε)2h′

(v′′)2q h′′

(h′)2

=
1
2
h′(θ − ε)2

q h′′

(h′)2

+
1

v′′
.

Assuming inelastic demand (the empirically relevant case), we know that dxu1
dp1

p1
xu1
< 1. This

implies that;

dxu1
dp1

p1

xu1
=
p1

xu1

[
1
2
h′(θ − ε)2

q h′′

(h′)2

+
1

v′′

]
> −1⇔ p1

xu1

[
v′′ 1

2
h′(θ − ε)2 + q h′′

(h′)2

v′′xu1q
h′′

(h′)2

]
> −1. (36)

Because v′′xu1q
h′′

(h′)2
> 0, it follows from (36) that

p1v
′′1

2
h′(θ − ε)2 + p1q

h′′

(h′)2
> −v′′xu1q

h′′

(h′)2
.

We divide both sides by xu1 , while noting that p1 = v′(X1), to obtain

−dx
u
1

dp1

p1

xu1
< 1⇔ v′(X1)

xu1
v′′

1

2
h′(θ − ε)2 +

v′(X1)

xu1
q
h′′

(h′)2
+ v′′q

h′′

(h′)2
> 0

⇔ R

(xu1)2
v′′

1

2
h′(θ − ε)2 +

(
R

xu1
+ v′′

)
q
h′′

(h′)2
> 0.

Similarly, we can have

−dx
u
2

dp2

p2

xu2
< 1⇔ v′(X2)

xu2
v′′

1

2
h′(θ + ε)2 +

v′(X2)

xu2
q
h′′

(h′)2
+ v′′q

h′′

(h′)2
> 0

⇔ R

(xu2)2
v′′

1

2
h′(θ + ε)2 +

(
R

xu2
+ v′′

)
q
h′′

(h′)2
> 0.

Recall that:

DA =

(
v′′ +

R̄

(x1)2

)[
0.5

R̄

(x2)2
v′′h′(θ + ε)2 + 0.5

(
v′′ +

R̄

(x2)2

)
q
h′′

(h′)2

]
+

(
v′′ +

R̄

(x2)2

)[
0.5

R̄

(x1)2
v′′h′(θ − ε)2 + 0.5

(
v′′ +

R̄

(x1)2

)
q
h′′

(h′)2

]
.
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If the demand for xs, s ∈ S is inelastic, then we have the following conditions:

(
v′′ +

R̄

(xs)2

)
< 0 for all s ∈ S;[

0.5
R̄

(x1)2
v′′h′(θ − ε)2 +

(
v′′ +

R̄

(x1)2

)
q
h′′

(h′)2

]
> 0;[

0.5
R̄

(x2)2
v′′h′(θ + ε)2 +

(
v′′ +

R̄

(x2)2

)
q
h′′

(h′)2

]
> 0.

Taken together, the results in this subsection imply that the risk burden shifts from the

utility to the consumers under revenue decoupling.
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Appendix F Supplementary Figures and Tables

Table F.1: The effect of adopting RD on prices, matched sample.

Price (real) Price (real)

Log-transformed Levels Log-transformed Levels

(RD = 1) 0.05 0.01 0.05 0.01
(0.311) (0.480) (0.124) (0.317)

R-sq. (adj.) 0.01 0.00 0.06 0.06
Obs 1184 1184 1184 1184

Time Fixed Effects yes yes yes yes
Utiliy-State Fixed Effects yes yes yes yes

Note: The table shows the result of estimating equation 1 on the matched sample. Each column in each
panel is a separate regression for a particular outcome variable. *, **, *** indicate statistical significance at
0.10, 0.05, and 0.01 level, respectively.

A24



Table F.2: The effect of adopting RD on prices, matched sample.

Price (real) Price (real)

Log-transformed Levels Log-transformed Levels

(RD = 1) 0.003 0.045 0.005 0.053**
(0.008) (0.030) (0.008) (0.025)

(Ractual,12 > Rprojected,12) -0.021 0.136*
(0.014) (0.090)

(RD = 1)*(Ractual,12 > Rprojected,12) 0.007 0.007
(0.005) (0.022)

(Ractual,6 > Rprojected,6) -0.029*** -0.129***
(0.002) (0.011)

(RD = 1)*(Ractual,6 > Rprojected,6) 0.001 -0.004
(0.004) (0.013)

R-sq. (adj.) 0.36 0.54 0.38 0.55
Obs 1184 1184 1184 1184

Time Fixed Effects yes yes yes yes
Utiliy-State Fixed Effects yes yes yes yes

Note: The table shows the result of estimating equation 1 on the matched sample, with
time-(Ractual > Rprojected) dummy, where Ractual and Rprojected are actual and projected revenues,
respectively . Each column in each panel is a separate regression for a particular outcome variable. *, **, ***
indicate statistical significance at 0.10, 0.05, and 0.01 level, respectively.
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Table F.3: Retail electricity prices relative to social marginal cost (SMC), by state, 2011.

Statecode State P-SMC Decoupled?

AK Alaska 0.183
AL Alabama 0.010
AR Arkansas -0.007
AZ Arizona 0.071
CA California 0.111 Yes
CO Colorado 0.068
CT Connecticut 0.091 Yes
DE Delaware 0.006
FL Florida 0.048
GA Georgia 0.015
HI Hawaii 0.435 Yes
IA Iowa -0.038
ID Idaho 0.039 Yes
IL Illinois -0.023
IN Indiana -0.033
KS Kansas -0.002
KY Kentucky -0.009
LA Louisiana -0.004
MA Massachusetts 0.069 Yes
MD Maryland 0.010 Yes
ME Maine 0.054
MI Michigan -0.009 Yes
MN Minnesota -0.027
MO Missouri -0.030
MS Mississippi 0.007
MT Montana 0.057
NC North Carolina 0.006
ND North Dakota -0.038
NE Nebraska -0.034
NH New Hampshire 0.075
NJ New Jersey 0.034

NM New Mexico 0.062
NV Nevada 0.064
NY New York 0.087 Yes
OH Ohio -0.019
OK Oklahoma -0.012
OR Oregon 0.055 Yes
PA Pennsylvania -0.005
RI Rhode Island 0.058
SC South Carolina 0.007
SD South Dakota -0.033
TN Tennessee 0.012
TX Texas 0.074
UT Utah 0.046
VA Virginia 0.007
VT Vermont 0.066 Yes
WA Washington 0.042
WI Wisconsin -0.011 Yes
WV West Virginia -0.030
WY Wyoming 0.040
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