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Abstract

Social scientists have long documented that many components of socioeconomic
status such as income and education have strong ties across generations. However,
health status, arguably a more critical component of welfare, has largely been ig-
nored. We fill this void by providing the first estimates of the Intergenerational
Health Association (IHA) that are explicitly based on a non-linear latent variable
model. Adjusting for only age and gender, we estimate an IHA of 0.3 indicating that
about one third of a parent’s health status gets transmitted to their children. Once
we add additional mediators to the model, we show that education, and particu-
larly children’s education, is an important transmission channel in that it reduces
the IHA by one third. Finally, we show that estimates of the IHA from non-linear
models are only moderately higher than those from linear models, while rank-based
mobility estimates are identical.
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Workshop on Labor, Health, and Development; and the Asian Workshop on Econometrics and Health
Economics in Kyoto for useful comments. We also thank Bo Honorè, Robin Lumbsdaine, Randall Ellis,
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1 Introduction

In recent years, there has been a growing focus on intergenerational mobility in socioe-

conomic status. By and large, the motivation of this literature has been to elucidate

the extent to which there is equality of opportunity. This literature has largely focused

on mobility in earnings and education. However, health status has been largely ignored.

This is unfortunate since, according to many, health is one of the most important compo-

nents of human welfare (e.g. Jones and Klenow (2016)). Moreover, health status in early

childhood has been shown to mediate many important economic outcomes in adulthood

(see Case, Fertig, and Paxson (2005), for example). Consequently, the combination of a

high association between health and economic status in conjunction with a high inter-

generational transmission of health status has potentially important implications for the

transmission of economic status across generations. However, despite the importance of

the topic, there is a paucity of work on the intergenerational transmission of health status.

The primary reason for the relative dearth of studies on the intergenerational trans-

mission of health status vis-à-vis economic status is that health is relatively harder to

measure. It is certainly true that income, education, and health are all measured with

error. However, we would argue that the degree of measurement error is more prominent

in health status. The reason for this is that many health measures are blunt proxies for

some underlying latent variable. In principle, either income or education could be per-

fectly measured but they typically are not due to recall or rounding errors. In contrast,

because the nature of health status is inherently nebulous, survey respondents cannot

provide a numerical value that exactly summarizes their morbidity level.

A common solution to this problem is to use Self-Reported Health Status (SRHS)

which is a categorical variable that respondents use to summarize their own health state.

The different integer values of SRHS correspond to different health categories e.g. ex-

cellent, very good, etc. The approach that we adopt in this paper is that SRHS is a

2



proxy for a more fundamental latent variable that corresponds to the respondent’s actual

health status. In this sense, our approach is similar to the approach adopted by Halli-

day and Mazumder (2017) who also employed latent variable models to estimate sibling

correlations in health status which can be viewed as another measure of mobility.

In Halliday, Mazumder, and Wong (2018), we address many of these critiques and

provide the first set of estimates of the intergenerational health association (IHA) in the

United States. We estimated an IHA on the order of 0.2-0.25. This implies that a child can

expect to “inherit” 20-25% of their parents’ health capital. Note that this is substantially

lower than analogous estimates of the intergenerational correlation in earnings which tend

to be 0.5 or higher in the United States (e.g. Mazumder (2005), Mazumder (2016)). Based

on these estimates, there is substantially more mobility in health status across generations

than in economic status.

An important feature of this earlier work was that we took long time averages of

SRHS for parents and children with the intent of extracting a more fundamental latent

variable to compute the IHA. However, the models in that paper were linear. This paper

builds on that work by estimating a non-linear model of intergenerational latent health

transmission in which the IHA is an explicit parameter. The fundamental question that

we aim to answer in this work is how the estimation of the IHA is affected by employing

non-linear, latent variable models.

In this work, we focus exclusively on SRHS. As in our earlier work, the reason is that

any study of intergenerational correlations requires a long enough panel so that both the

parents and the children can be observed for a sufficiently long time period. We employ

the Panel Study of Income Dynamics (PSID) which is the longest running panel in the

world. In addition, the PSID has been collecting information on SRHS since 1984 which

provides us with thirty years of data on health status. We know of no other data source

in the world in which this is possible.1

1The PSID does collect other information on health status but most of this is only available in the
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We estimate an IHA that varies between around 0.2 and 0.3 depending on the spec-

ification. Without any controls beyond age and gender, the IHA is 0.3 which is about

one-fifth larger than the corresponding estimate from our earlier work of 0.23. We then

include a battery of variables that exhibit little variation within families such as race and

education to see how these “moderators” impact the estimation of the IHA. We show that

race and education can explain roughly one-third of the IHA. In particular, education, and

especially children’s education, appears to be an important mechanism by which health

is transmitted across generations.

On the whole, we show that employing a more rigorous non-linear model does affect

estimates of the IHA, albeit modestly. Failure to model the latent variable properly results

in an underestimation of the IHA on the order of 10-20% depending on the specification.

The bias from estimating linear models is smallest when a large number of moderators is

included in the model. Notably, employing non-linear models matters less for estimates

of the rank-rank correlation and, in fact, we show that there is no difference in rank-based

mobility estimates in linear and non-linear models.

While we are among the first set of authors to estimate intergenerational health mo-

bility within a latent variable framework, there is a (mostly) nascent literature that is

starting to investigate health mobility. Probably, the paper that is closest to this and

Halliday, Mazumder, and Wong (2018) is Andersen (2018) who estimates similar models

using Danish registers and finds that there is even more health mobility in Denmark than

in the United States. Earlier work finds that the intergenerational correlation in life spans

is on the order of 0.15-0.30 (e.g. Ahlburg (1998) and Yashin and Iachine (1997)). Other

work by Darden and Gilleskie (2016) finds a significant transmission of smoking behav-

iors across generations in the Framingham Heart Study. Work by Johnston, Schurer, and

Shields (2013) investigates intergenerational associations in mental health in the British

Cohort Study and estimates correlations between 0.13 and 0.15. Finally, Akbulut-Yuksel

1999 wave and beyond which makes it difficult to use in study of intergenerational correlations.
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and Kugler (2017) employ the National Longitudinal Survey of Youth and find strong

intergenerational persistence in weight, height, and body mass index.

The balance of this paper is organized as follows. In Section 2, we describe our

extract from the PSID. Next, in Section 4, we provide some descriptive evidence on the

determinants of SRHS in the PSID. After that in Section 3, we discuss our model of

health transmission across generations and how we estimate it. In Section 5, we discuss

our findings. We then conclude in Section 6.

2 The Data

We employ the PSID spanning the years 1984-2013. The 30 year time span of the data

allows us to collect a sufficiently large amount of information on the SRHS of both parents

and children. Note that after 1999, the PSID was conducted biannually, so that we have a

total of 22 waves in our sample. Because SRHS was only collected for heads of household

and their spouses, our sample is restricted to them. Consequently, we only include adult

children, i.e. those over age 20, in the sample. In total, we have 243,150 individual/time

observations. Of these, we have 52,459 observations for fathers or 21.57% of the sam-

ple, 86,818 observations for mothers 35.71% of the sample, and 103,873 observations for

children or 42.72% of the sample. We report a break-down of samples sizes by year and

family relation in Table A1. In total, we have 6,027 households, defined as the unit that

once contained the parents and children, and 20,400 individuals. In Table A2, we report

the frequencies for the length of time in the panel. The median length in the panel was

eight years.

In Table 1, we report descriptive statistics for the variables that we use. Statistics

are reported for the whole sample as well as for fathers, mothers, and children. Our

main variable of interest is SRHS which is a categorical variable that takes on integer

values between one and five (1=excellent, 2 = very good, 3 = good, 4 = fair, 5 = poor).
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The average for SRHS in the sample is 2.484 which falls somewhere between “very good”

and “good.” The average age in the sample is 43.133 with parents having an average

age of about 49 and children having an average age of about 35. The difference in ages

across generations in the sample is about 14 years which may seem low but this most

likely reflects a combination of mortality and the fact that children can be sampled well

after parents have died. Finally, we also employ data on some individual and household

characteristics including years of schooling, family income, and race dummies.

The family income variable is a measure of permanent household income. The variable

that we employ is the average of all available time observations of total family income.

For each yearly income observation, we divided family income by the square root of the

household size. We then deflated yearly income to 2013 dollars using the CPI urban

consumers series.

Our primary health measure is SRHS. Within countries, these subjective health mea-

sures are highly predictive of health outcomes including mortality (e.g. Ware, Davies-

Avery, and Donald (1978) and Van Kippersluis, O’Donnell, Van Doorslaer, and Van Ourti

(2010)). As discussed by Banks and Smith (2012), there are issues when comparing SRHS

across substantially different groups such as countries. However, because we are compar-

ing SRHS within families, these issues are less salient in our context. That said, we will

conduct some investigations into robustness to reporting heterogeneity by parents and

children as in Lindeboom and Van Doorslaer (2004) later on in the paper.

3 A Simple Model of Health Transmissions

The Model

We let hpft and hcft denote the observed health of the parent and child for parent p =

1, ..., Pf , child c = 1, ..., Cf , family f = 1, ..., F , and time t = 1, ..., Tjf for j ∈ {c, p}. Note

that T depends on f and either c or p. Health outcomes are discrete and can take on

6



outcomes j ∈ {1, ..., 5}. Outcomes are then determined by the following latent variable

structure:

hpft = j ⇐⇒ αj−1 < Xpftβ
P + φPf + νpft ≤ αj

hcft = j ⇐⇒ αj−1 < Xcftβ
C + φCf + νcft ≤ αj

(1)

where Xpft and Xcft are 1×K vectors. We assume that

 φPf

φCf

wPf , w
C
f

 ∼ N


 wPf γ

P

wCf γ
C

 ,

 1 σpc

σpc σ2
pc + κ2


 (2)

and  νpft

νcft

Xpf , Xcf , φ
P
f , φ

C
f

 ∼ N(0, σ2I2)

where Xpf and Xcf collect the time-variant regressors for a given individual and wPf and

wCf are 1 × L vectors of family-specific variables. We normalize α0 = −∞ and α5 = ∞.

The covariance matrix for the time-invariant effects is standard and follows Koop and

Poirier (1997) and van Hasselt (2011). Note that we are normalizing the residual variance

of φPf to be unity while we will be estimating the variance of νpft and νcft. Finally, the

IHA is σpc.

Using the prior on the fixed effects in equation (2), we can write

φPf = wPf γ
P + uPf

φCf = wCf γ
C + σpcu

P
f + ηCf

where ηCf |wPf , wCf ∼ N(0, κ2), uPf |wPf , wCf ∼ N(0, 1) and E[uPf η
C
f |wPf , wCf ] = 0. This

transformation preserves the original covariance structure of φPf and φCf . Next, if we let
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h̃pft and h̃cft denote the latent indices in equation (1), we can rewrite this model as

h̃pft = Xpftβ
P + wPf γ

P + uPf + νpft

h̃cft = Xcftβ
C + wCf γ

C + σpcu
P
f + ηCf + νcft.

(3)

For reasons that we will articulate, we will employ Bayesian methods to estimate this

model. This formulation of the model facilitates the use of the Gibbs sampler. For

example, it has the desirable property that σpc can be treated as a regression parameter

and, so will have a Normal conditional posterior distribution. Similarly, κ2 will have an

Inverse Gamma conditional posterior distribution.

In the model, there are both individual-specific covariates, Xpft and Xcft, and family-

specific (and time-invariant) covariates, wPf and wCf . The former includes gender and age.

For the latter, we include education, race, and permanent income all of which do not vary

over time and are (for the most part) family-specific.2 Inclusion of these covariates allows

us to see how the covariance structure in latent health is altered as they are sequentially

included in the model. In other words, they shed light on the mechanisms underlying the

intergenerational transmission of health status. Note that the family-specific covariates

are collinear with the fixed effects in uPf and ηCf . Accordingly, to estimate the γ parameters,

we will employ a step in the estimation procedure that is based on Hausman and Taylor

(1981) which follows from the prior given in equation (2). In contrast to the estimation

of the β’s which relies on within family variation for identification, estimation of the γ’s

relies on between family variation. We discuss this further in the appendix.

We can stack the individual/family/time specific equations into a system of Seemingly

Unrelated Regressions (SUR). The notation is somewhat complicated, so we leave the

2Specifically, we took averages of these covariates over families.
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details for the appendix. The resulting SUR model can be written as:

 h̃P

h̃C

 =

 XP 0

0 XC


 βP

βC

+

 PwP 0

0 CwC


 γP

γC

+

 P

σpcC

up+

 0

C

 ηc+ν

or more compactly as

h̃ = Xβ + Wγ + Zθ + ν

where h̃ is T (≡ T P + TC)× 1, X is T × 2K, W is T × 2L,

Z ≡

 P 0

σpcC C

 ,

and θ ≡ (up
′, ηc

′)′. The matrix, X, contains the individual characteristics and the ma-

trix, W, contains the family characteristics for both the parents and the children. Note

that the block diagonal structure allows for different effects of observables on parent and

child. Importantly, this SUR structure allows us to investigate if parent- or child-specific

mediators are more important in explaining the transmission of health status which is

something that we will explore later. Finally, the matrix, Z, is a design matrix that al-

locates the family fixed effects. The formal definitions of all vectors and matrices are in

the appendix.

We impose a couple of restrictions on the model to facilitate identification. First,

as already discussed, we normalize V (uPf ) to unity. While it is typically standard to

normalize σ2 to be unity in this class of models, this is still a valid restriction. Indeed, per

the discussion in Heckman (1981) on p. 129, σ2 is identified subject to a normalization on

V (uPf ) since the intra-class correlation is identified in the one factor model with more than

one time period. The second restriction concerns the cut points. In an ordered response

model, the cut-points, regression parameters, and the variance of the idiosyncratic shocks
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(σ2 in this model) are not separately identified since we can always scale the cuts and the

regression parameters by the same percentage as the change in σ2. Our solution to this is

to normalize the cut points to external estimates using the same sample. The procedure

that we employ to obtain the cuts externally is to estimate ordered logit models as in Table

2 and to use the cut-point estimates corresponding to the appropriate set of covariates.

We estimate this model using Bayesian simulation methods which offer some benefits

over classical Maximum Likelihood Estimation (MLE). First, our estimation procedure

only requires simulation from standard distributions whereas MLE requires an onerous

maximization procedure which includes the estimation of a complete set of family fixed ef-

fects. Second and related, because MLE involves the estimation of family fixed effects and

because its asymptotics are with respect to families, MLE has an incidental parameters

problem (Neyman and Scott (1948)). Our Bayesian procedure involves simulation from

the exact finite sample posterior of the parameters. Because it does not rely on asymptotic

theory for the distribution of the parameters, there is no incidental parameters problem

with the Bayesian approach.

Interpretation of the IHA and Related Mobility Measures

The IHA obtains from a regression of the latent health of the children onto the latent

health of the parents. Specifically, if we define uCf ≡ σpcu
P
f + ηCf , then we can write

E
[
uCf |uPf

]
= σpcu

P
f .

The normality assumption in the model implies that the expectation is linear. Because we

normalized V (uPf ) to unity, the IHA delivers the effect of a one standard deviation increase

in the latent health of the parents on the expected latent health of their children. In other

words, σpc of one standard deviation of the parents’ health capital gets transmitted to the

next generation.

We can also use this framework to move beyond the IHA to a discussion of rank-rank
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correlations as a summary of mobility as in Chetty, Hendren, Kline, and Saez (2014) and

Halliday, Mazumder, and Wong (2018). To fix ideas, we let qPα denote the αth percentile

of uPf . So, if Φ denotes a Standard Normal CDF then we will have that Φ
(
qPα
)

= α

and that E
[
uCf |uPf = qPα

]
= σpcq

P
α . Now, using the marginal distribution for the children’s

distribution, we can construct a measure of rank-rank mobility using

τ(α) = Φ

(
σpc√
σ2
pc + κ2

Φ−1 (α)

)
. (4)

The interpretation of this object is that if the parent’s health is at the αth percentile

of their marginal distribution then their child’s (expected) health will be at the τ(α)th

percentile of the next generation’s marginal distribution. For this reason, we call τ(α)

the unconditional rank-rank regression. We then obtain that if σpc = 1 and κ2 = 0, then

τ(α) = α implying perfect rank-persistence across generations. Conversely, if σpc = 0 and

κ2 > 0, then τ(α) = 0.5 implying zero rank persistence across generations. Finally, if

0 <

∣∣∣∣ σpc√
σ2
pc+κ

2

∣∣∣∣ < 1, then we will obtain positive persistence across generations with some

degree of mean reversion.

Bayesian Estimation

We now discuss the Bayesian estimation of the model’s parameters. We define λ ≡

(β′, γ′, σpc, κ
2, σ2)′ and h as the collection of the blunt outcome variables (hpft and hcft)

into a T × 1 vector. Note that T is defined precisely in the appendix and corresponds to

the total number of individual/time observations across both generations. The model’s

posterior is then given by

p(h̃, λ, θ|h,X,W,Z).

To estimate λ and θ, we will employ a Gibbs sampler algorithm in which we first sample

h̃ using the data augmentation procedure discussed by Albert and Chib (1993), followed

by σpc, β, θ, γ, and finally by κ2 and σ2. Conditional on h̃ and employing the structure
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that we have laid out, the model is a relatively standard linear hierarchical model:

p(λ, θ|h̃,X,W,Z) ∝ p(h̃|λ, θ,X,W,Z)p(θ|λ)p(λ) (5)

∝ p(h̃|λ, θ,X,W,Z)
F∏
f=1

p(ηcf |κ)p(κ2)p(σ2)p(β)p(γ)p(σpc)

We employ conjugate prior distributions which are defined in the appendix. The Gibbs

sampler algorithm that we employ is then defined below.

1. Initialize
(
σ0
pc, β

0, θ0, γ0, κ2,0, σ2,0
)
.

2. Sample from p(h̃|σn−1pc , βn−1, θn−1, γn−1, κ2,n−1, σ2,n−1,h,X,W,Z). Specifically, we

draw a total of T values of h̃jft for j ∈ {c, p} from

N
(
Xβn−1 + Wγn−1 + Zθn−1, σ2,n−1)

truncated on the interval (αj−1, αj) whenever hift = j for j ∈ {c, p}.

3. Sample from

p(σpc|βn−1, θn−1, γn−1, κ2,n−1, σ2,n−1, h̃n,h,X,W,Z),

p(β|θn−1, γn−1, κ2,n−1, σ2,n−1, h̃n, σnpc,h,X,W,Z),

p(θ|γn−1, κ2,n−1, σ2,n−1, h̃n, σnpc, β
n,h,X,W,Z),

p(γ|κ2,n−1, σ2,n−1, h̃n, σnpc, β
n, θn,h,X,W,Z),

p(κ2|σ2,n−1, h̃n, σnpc, β
n, θn, γn,h,X,W,Z),

p(σ2|h̃n, σnpc, βn, θn, γn, κ2,n,h,X,W,Z)

where the conditional distributions are defined in the Appendix in equations (A.3)

- (A.9).
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4. Return to Step 2.

For the second step of the algorithm, we employ an efficient routine developed by Botev

(2017) to sample from a truncated normal distribution.

At each iteration of the Gibbs sampler, we can compute a pseudo-R2 as follows. We

can simulate the latent variable by drawing a T vector of Normal random variables with

mean zero and variance σ2. These are then added to Xβ + Wγ + Zθ from that iteration.

We can then predict a vector of the the categorical outcomes, ĥ. A pseudo-R2 can then

be computed as ρ(ĥ,h)2 where ρ denotes Spearman’s rank correlation to account for the

ordinal nature of the data. Note that because of the inclusion of the family fixed effects

in the design matrix, inclusion of many time-invariant variables will essentially transfer

the explanatory power from Z to W and, thus, inclusion of additional time-invariant

regressors will do little to affect the pseudo-R2.

4 Descriptive Evidence

Before we discuss our estimates of the structural model of health transmission, we provide

some descriptive evidence on SRHS in the PSID. First, we estimate a series of ordered

logit models in which we regress SRHS onto our main exogenous covariates: age, sex,

race, education, and income. Second, we provide some evidence on the intergenerational

transmission of health status that relies on linear models that is similar to the estimates

in Halliday, Mazumder, and Wong (2018). This set of estimates will provide us with an

indication of how much of a difference employing the non-linear model makes.

In Table 2, we report the ordered logit estimates which displays some common re-

lationships between SRHS and typical exogenous covariates. First, SRHS declines with

age. This is important because it suggests that people do not merely report their health

status relative to others of the same age which has also been pointed out by Deaton and

Paxson (1998). Second, we see the common result that women have worse SRHS than
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men. Third, we see common patterns across races with whites having better SRHS than

blacks in the second column. Inclusion of race increases the R2 by 47% relative to the

previous column. Next, we add education in the third column. Again, we see the common

pattern of increasing SRHS in years of schooling. Inclusion of the education variable fur-

ther increases the R2 by 48%. Finally, we add our measure of permanent family income in

the fourth column. We see the common result that richer households have better SRHS.

Note that this does attenuate the education variable somewhat. However, both variables

remain highly significant. Inclusion of family income further increases the R2 by 6%.

Hence, conditional on race and education, income does little to improve the predictive

power of the model.

Next, we provide a set of “reduced form” estimates of the IHA employing linear models.

These estimates are based on a linear analogue to the model from the previous section.

We will adopt the notation that xf
j denotes the average over time periods and individuals

(within a given generation) of xjft for either the parent (j = P ) or child (j = C). We

then consider the following linear system:

hf
P

= Xf
P
β̃P +Wf

P
γ̃P + ũPf

hf
C

= Xf
C
β̃C +Wf

C
γ̃C + ũCf

ũCf = σ̃pcũPf + η̃f

To economize on notation, we are suppressing the individual/time averages of the νcft

and νpft which will be small in a long panel. The dependent variables in the first two

equations of this system are averages of the cardinal five-point SRHS variables (denoted

hjft earlier). This system is what essentially would obtain if the econometrician could

observe the system of latent variables in equation (3) directly. A measure of the bias that

is created by ignoring the latent variable structure from the previous section is then given
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by:

bias =
σpc − σ̃pc
σpc

. (6)

We will report this estimate of the bias in the coming section. Note that this system

delivers the same IHA estimates as in Halliday, Mazumder, and Wong (2018).

We report estimates from five specifications in Table 3. In the first column, we only

adjust for age and gender and we obtain a reduced form IHA of 0.247. Further adjusting

for race in the next column, we obtain a slightly smaller estimate of 0.228. Next, we

include education in the model in the third column and we obtain an IHA of 0.160.

So, adjusting for education results in an estimate that is about 30% lower than the

specification in the second column. In the fourth column, we add income to the model

and the estimate is about the same as it was in the third column when we only adjusted for

education. Accordingly, conditional on education, income does not appear to explain the

intergenerational transmission of health. This is consistent with Table 2 in the sense that

the inclusion of income in the ordered logit models had little impact on the R2. Finally,

in the fifth and final specification, we include family income but we exclude education.

We obtain an IHA of 0.197. This is substantially higher than the IHA in the third column

of 0.163 where we controlled for education but not earnings. What this suggests is that

education is relatively more important in explaining the intergenerational transmission of

health than income is.

5 Structural IHA Estimates

Core Estimates

We now report the core estimates of the IHA from the latent variable model. For each

estimation, we drew 1500 simulations from the posterior distribution of the model’s pa-

rameters. We discarded the first 500 of these due to the “burning-in” of the sampler. In
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the appendix, we discuss the convergence of the sampler.

We estimate five specifications. All specifications include age and gender as family-

variant covariates. In the first specification, we include no additional controls. In the

next three specifications, we sequentially include race, years of schooling, and permanent

income as family-specific covariates. Note that each of these variables are averages that

are specific to the family in a given generation. For example, education is the average

years of schooling for all children or all parents in a given family. We think of these

variables as indices specific to the family for education, race, or income.

The means of the simulated parameters and their corresponding confidence intervals

are reported in Table 4. The first panel of the table reports the estimates of the parent-

specific covariates. The second panel reports estimates of the children-specific covariates.

The bottom panel reports the estimates of covariance parameters.

The estimates of the covariate coefficients reveal standard patterns and are broadly in-

line with those in Table 2. The coefficient estimates on age and gender are very similar to

those in Table 2 and are very stable across generations and specifications. The coefficient

estimates on education and income are also fairly stable and are numerically close to those

from Table 2. For all estimations, the pseudo-R2 is about 25%.

The coefficient estimates on the white and black dummies in columns two through four

warrant some discussion. First, in both generations, we see that education and income

attenuate, but do not eliminate, the black/white gap in health status. Second, unlike

education and income, we do see generational differences in the impact of race on health

status with there being less of a race gap in the younger generation.

We now move on to the covariance parameters and, specifically, the IHA. We visually

depict the IHA estimates using box plots in Panel A of Figure 1 which has five box

plots corresponding to the five IHA estimates from Table 4. Without any family-specific

controls the IHA is 0.291. In the second column when race is added as a control, the IHA

decreases to 0.257. What this says is that factors associated with race reduce the IHA

16



by about 12%. Further adding education in column three reduces the IHA substantially;

the IHA becomes 0.170 once race and education are included. This is 34% lower than the

IHA from the second column and 42% lower than the baseline IHA estimate from first

column. Adding permanent income to the other covariates in the fourth columns does not

change the IHA from the previous column. The IHA is 0.184 and the confidence interval

overlaps substantially with the confidence interval in the previous column.3

Based on the estimates of the IHA from the first four columns of Table 4, it is not clear

whether education or earnings are more important in explaining the intergenerational

transmission of health capital. To shed light on this, in the fifth column, we include

earnings (and race) but exclude education from the model. We obtain an IHA of 0.223

which is 13% lower than the IHA in the second column that only includes race. By way

of contrast, the IHA from the third column that includes education and race was 33%

lower. A similar finding is obtained in Table 3.

There are three main take-aways from these estimates of the IHA. The first is that,

without conditioning on any family-specific covariates, a child can expect to receive about

30% of their parent’s health status. Of this, education and, to a lesser extent race explain

over one-third of the transmission. Third, ignoring the latent variable matters somewhat

but not tremendously. We report the bias created by ignoring the latent variable in the

third row from the bottom of Table 4 given in equation 6. Estimates of the IHA that are

obtained when the latent variable is not properly extracted are between 7 and 15 percent

smaller than those obtained by estimating our latent variable model.

Cut Point Heterogeneity

3It is important to note that inclusion of additional family-specific covariates increases the variance of
components of the residual that are not correlated across generations. The variances, σ2 and κ2, measure
the within and between components of the residual variation in latent health, respectively. Inclusion
of family-specific variables increases the relative contribution of the within component of the variance.
Because of the normalization on the variance of uPf , the parameter, σ2, must increase. On a similar note,

the variance, κ2, is the variance component of the family-specific fixed effect in the children’s generation
that is not transmitted across generations. Inclusion of observable covariates that are transmitted across
generations, therefore, increases the relative contribution of the the components that are not transmitted
across generations.
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The results from the core model, while allowing the β’s and γ’s to be different for parents

and children, assume that the cut points are the same. This issue is discussed by Lin-

deboom and Van Doorslaer (2004) who propose using a simple likelihood ratio statistic

to test for heterogeneity in the cut points across groups. In this spirit, we calculate test

statistics for heterogeneity in (a) the regression coefficients and the cut points and (b)

the cut points based on the models estimated in Table 2. For all four specifications, the

likelihood ratio tests indicate that there is heterogeneity in both the regression coefficients

and the cut points; all eight p-values are essentially zero.

Allowing for heterogeneity in the cut points is useful for two reasons. First, this allows

us to see if the results in Table 4 are robust to this generalization. Second, allowing

for heterogeneity in the cuts across generations enables us to include different sets of

covariates for parents and children which we will do later on in the paper.4

In Table 5, we report estimation results from the generalized model with the different

cuts by generation. We consider the same five specifications as in Table 4. Also, as

with the estimates in Table 4, we estimated the cut-points externally except with these

estimates we did so separately by parent and child. Finally, we also report box plots of

the IHA from this generalized model in Panel B of Figure 1.

The main take-away from these estimates is that leaving the cut-points unrestricted

by generation results in slightly larger estimates of the IHA for all five specifications. In

the most parsimonious specification in the first column, we obtain an estimate of the IHA

of 0.308, whereas the corresponding estimate in Table 4 was 0.291. However, note that the

95% confidence intervals from the first column of each table do overlap. This is the case

for the other four specifications as well. The point estimates of the IHA are systematically

higher in Table 5, but the confidence intervals of the estimates always overlap. This is

4This point is not obvious. The reason has to do with the cuts needing to change with the selection
of covariates. Every time the set of covariates changes, the estimation of the cut points in a standard
ordered logit model changes. Because we needed to utilize cuts from an external estimation due to the
identification issues articulated earlier, using different covariates across generations requires different cuts
across generations as well.
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clearly shown in both panels of Figure 1.

Unconditional Rank-Rank Regressions

We now compute the unconditional rank-rank regressions as defined by τ(α) in equation

(4). For both the models with homogeneous cut points in Table 4 and heterogeneous

cut points in Table 5, we compute τ(α) for the specification in the first column with no

controls (aside from age and gender) and in the fourth column that controls for race,

education, and income. We report our estimates of τ(α) from these two specifications

in Figure 2. Each panel of the figure reports lines for τ(α) = 0.5 which corresponds to

perfect health mobility and τ(α) = α which corresponds to perfect health persistence.

Finally, in the bottom of each panel in the figure, we report the rank-rank or Spearman

correlation which can be obtained from an OLS regression of τ(α) onto α.5

In all four panels of Figure 2, the plots of τ(α) are closer to τ(α) = 0.5 than to

τ(α) = α indicating a large degree of health mobility. This is especially true for the

panels in the second column from the models that include controls for race, education,

and income. In addition, looking across the rows, we see that accounting for heterogeneity

in the cut points makes little difference in mobility as estimated by τ(α) whereas it did

have some impact on estimates of the IHA.

The implied rank-rank correlations reported at the bottoms of each of the four panels

are about 0.28 in the panels in the first column and 0.17 in the panels in the second

column of Figure 2. Note that in each of the two columns, these correlations are very

similar indicating that accounting for heterogeneity in the cuts makes little difference

in these mobility measures. Finally, in Table A3 in the appendix, we report estimates

of “reduced form” rank-rank correlations analogous to what we did in Table 3 for the

IHA. The corresponding correlations are 0.281 and 0.163 and can be found the first and

fourth columns of the table. This is almost identical to the rank-rank correlations from

the structural model. In Figure A3 of the appendix, we report estimates of τ(α) for the

5We restricted the regressions to values of α between 0.1 and 0.9.
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remaining three specifications in Tables 4 and Table 5 and we still see that the implied

rank-rank correlations from the latent variable model are remarkably similar to those from

Table A3. This suggests that computing the rank-rank correlations from the linear model

as was done in Halliday, Mazumder, and Wong (2018) does not result in any meaningful

bias.

Why are the rank-based mobility estimates from the non-linear and “reduced form”

models approximately equal? The reason is that for any two random variables, X and Y ,

the rank correlation is the same for any monotonic transformations of the two variables.

Because the variables hf
P

and hf
C

are close to monotonic transformation of uPf and uCf , we

should expect to find similar rank correlations in both the non-linear and linear models.

Generation-Specific Mediators

Previous results depicted in Figure 1 suggested that education was the primary mediator

in the link between parent and child health. However, in those results, we included the

education of both the parent and the child as mediators. As such, it is not clear from

previous findings whether it is the education of the child or the parent that is the most

important. To investigate this, we employ heterogeneous cut points as we did above while

adjusting only for child or parent education but not both.

We present these estimations in Figure 3. The figure displays box plots of the IHA

from four estimations. The first includes only race as a control and is the same as the

estimate from the second column of Table 4. The second adds parent education but not

child education. The third includes child education but not parent education. The fourth

includes both and is therefore identical to the estimate in the third column of Table 4.

The results indicate that, while both parent and child education matter, the latter

matters more. Adjusting for only race, the IHA is 0.257. Further inclusion of parent

education drops the mean to 0.228. However, adding child education but excluding parent

education as in the third box plot drops the mean further to 0.190. Finally, including

both parent and child education results in an IHA of 0.184.
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6 Conclusion

In this paper, we provided the first structural estimates of the Intergenerational Health

Association based on a non-linear, latent variable model of health determination. Using

the PSID, we compute an IHA of 0.291 when only adjusting for age and gender. This is

roughly 20% larger than the only other estimate of the IHA in the literature from Halli-

day, Mazumder, and Wong (2018). Our ability to extract a more accurate measurement

of health status is what underlies the larger estimates. In addition, the non-linear model

delivers an unadjusted rank-rank correlation of 0.28 and a correlation of 0.16 when ad-

justing for race, education, and income. Both the IHA and rank-rank correlation indicate

a large degree of health mobility across generations. Notably, rank-based estimates from

our non-linear model are identical to those from analogous linear models.

Based on this, estimation of linear models as was done in our previous work should

be sufficient for some aspects of the study of intergenerational health mobility. However,

researchers should bear two issues in mind. First, taking long time averages of self-rated

health is critical. Second, while estimations of the IHA with linear models have a small

bias, rank-based mobility estimations have no bias.

We also include a battery of family-specific covariates such as proxies for race, ed-

ucation, and permanent household income. We show that the combination of race and

education can explain about 40% of the IHA. Of these, education matters the most as

its inclusion reduces the IHA by roughly one third relative to a specification that only

includes race. In addition, we find that children’s education matters more than parent’s

education. This suggests that parents regardless of their educational attainment (or pol-

icy makers) may be able to weaken intergenerational links in health capital by investing

in children’s education.

One interesting outcome of this work is that there is substantially less persistence

in health status across generations than in economic status which typically exhibits an
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intergenerational correlation of 0.5 or higher (see Mazumder (2005), for example). This

is the case even after we account for proper measurement of health status using latent

variable models. Future work should investigate why this is the case and what it implies

for the association between health and economic status in later parts of the life-cycle.

Finally, we have developed a framework that can be employed when looking at inter-

generational transmissions in other contexts where latent variables are important. For

example, the methods that we have developed in this paper could be applied to study

intergenerational persistence in non-cognitive skills (or other personality traits) where we

may have multiple measurements that are error-ridden proxies of an underlying latent

variable. We hope that other researchers adopt the approach that we have developed in

this work to other contexts so that they can arrive at a better understanding of persistence

in other non-economic outcomes across generations.

A.1 Appendix: Deriving the SUR Model

We now derive the SUR model. If we stack the model in equation (3) over t and all

parents or children in family f , we obtain

h̃Pf = XP
f β

P + 1TP
f
∗ wPf γP + 1TP

f
∗ uPf + νpf (A.1a)

h̃Cf = XC
f β

C + 1TC
f
∗ wCf γC + 1TC

f
∗ σpcuPf + 1TC

f
∗ ηCf + νcf (A.1b)

where equation (A.1a) is a T Pf (≡
∑Pf

p=1 Tpf ) - and equation (A.1b) is a TCf (≡
∑Cf

c=1 Tcf )

- system of equations and 1X denotes an X - vector of ones.6 Next, we stack one more

6Note that TP
f and TC

f correspond to the total number of time periods and either parents or children
in a given family.
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time over families to obtain:

h̃P = XPβP + PwPγP + Pup + νp (A.2a)

h̃C = XCβC + CwCγC + σpcCup + Cηc + νc. (A.2b)

Equation (A.2a) is a T P (≡
∑F

f=1 T
P
f ) - system in whichXP is T P×K, wP ≡

(
wP

′
1 , . . . w

P ′
F

)′
is F × L, P is T P × F and is defined as

P ≡



1TP
1

0 . . . 0

0
. . .

...

...
. . .

...

0 . . . 0 1TP
F


,

up ≡ (uP1 , . . . , u
P
F )′ which is F × 1, and νp collects the idiosyncratic shocks and is T P × 1.

Similarly, equation (A.2b) is a TC(≡
∑F

f=1 T
C
f ) - system in which XC is TC ×K, wC is

F ×L, C is TC × F and is defined analogously to P, ηc is defined analogously to up and

is F × 1, and νc, which also collects the idiosyncratic shocks, is TC × 1. Finally, we can

stack the parent and child systems into one grand system. Doing this, we obtain

 h̃P

h̃C

 =

 XP 0

0 XC


 βP

βC

+

 PwP 0

0 CwC


 γP

γC

+

 P

σpcC

up+

 0

C

 ηc+ν

or more compactly as

h̃ = Xβ + Wγ + Zθ + ν

where h̃ is T (≡ T P + TC)× 1, X is T × 2K, W is T × 2L,

Z ≡

 P 0

σpcC C

 ,
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and θ ≡ (up
′, ηc

′)′.

A.2 Appendix: Prior Distributions

We employ the following conjugate prior distributions:

σpc ∼ N
(
0, s−1pc

)
β ∼ N

(
0,H−1β

)
γP ∼ N

(
0,H−1

γP

)
γC ∼ N

(
0,H−1

γC

)
κ2 ∼ IG2 (sκ, νκ)

σ2 ∼ IG2 (sσ, νσ) .

Note that, as already discussed, ηcf ∼ N(0, κ2).

A.3 Appendix: Conditional Posterior Distributions

We now discuss the conditional distributions that we use in the Gibbs sampler. We begin

by discussing the sampling of all of the parameters except for γ which warrants a separate

discussion. These conditional posteriors are based off of the factorization of the posterior

given in equation (5). This factorization of the posterior is written in terms of the fixed

effects given in θ which are orthogonal to the family-specific covariates in wPf and wCf . To

understand the conditional posterior for γ, we will write the posterior in terms of φP and

φC which are inclusive of wPf and wCf .
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A.3.1 Conditional Posteriors for σpc, β, θ, κ
2 and σ2

The conditional distribution of σpc is given by

σpc|β, θ, γ, κ2, σ2 ∼ N
(
σ∗pc, σ

2 ∗H−1σpc
)

(A.3)

where

D ≡ Cup

Hσpc ≡ D′D + spc

WC ≡ CwC

σ̂pc ≡ (D′D)−1D′
[
h̃C −XCβC −WCγC −Cηc

]
σ∗pc ≡ H−1σpc (D′D) σ̂pc.

Second, the conditional distribution of β is given by

β|θ, γ, κ2, σ2, σpc ∼ N
(
β∗, σ

2 ∗H−1β
)

(A.4)

where

Hβ ≡ X′X + Hβ

β̂ ≡ (X′X)
−1

X′
[
h̃−Wγ − Zθ

]
β∗ ≡ H−1β (X′X) β̂.

Note that Z contains σpc which was sampled in the previous step. Next, the conditional

distribution of θ is given by

θ|γ, κ2, σ2, σpc, β ∼ N
(
θ∗, σ

2 ∗H−1θ
)

(A.5)
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where

Hθ ≡ Z′Z + Hθ

Hθ ≡

 IF 0

0 κ−2IF


θ̂ ≡ (Z′Z)

−1
Z′
[
h̃−Xβ −Wγ

]
θ∗ ≡ H−1θ (Z′Z) θ̂.

Finally, the conditional distributions of κ2 and σ2 are given by

κ2|σ2, σpc, β, θ, γ ∼ IG2

(
κ2∗, F − 2 + νκ

)
(A.6)

where

κ2∗ ≡ ηc
′ηc + sκ.

and

σ2|σpc, β, θ, γ, κ2 ∼ IG2

(
σ2
∗, T − 2 + νσ

)
(A.7)

where

σ2
∗ ≡ sσ + s

s ≡
[
h̃−Xβ −Wγ − Zθ

]′ [
h̃−Xβ −Wγ − Zθ

]
.
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A.3.2 Conditional Posterior for γ

To derive the conditional posteriors for γ, we write the posterior in terms of φ instead of

θ:

p(h̃, λ, φ|h,X,W,Z).

Given this formulation of the posterior, the information on γ comes through the prior in

equation (2). Conditional on wPf , w
C
f , the posterior on (φPf , φ

C
f , λ) can be written as:

p(φPf , φ
C
f , λ|wPf , wCf ) = p(φPf , φ

C
f |λ,wPf , wCf )p(λ)

= p(φCf |φPf , λ, wPf , wCf )p(φPf |λ,wPf , wCf )p(λ)

= p(φCf |φPf , γC , σpc, κ2, wPf , wCf )p(φPf |γP , wPf , wCf )p(λ)

∝ κ−1 exp
(
−κ−2

(
φCf − wCf γC − σpcuPf

)2)×
exp

(
−
(
φPf − wPf γP

)2)
p(λ)

Based on this, we can employ standard calculations from the Bayesian literature and

derive the conditional distribution of γ:

γP |φP , φC , β, κ2, σ2, σpc ∼ N
(
γP∗ , H

−1
γP

)
(A.8)

where

HγP ≡ wP ′wP + HγP

γ̂P ≡
(
wP ′wP

)−1
wP ′φP

γP∗ ≡ H−1
γP

(
wP ′wP

)
γ̂P

and

γC |φP , φC , β, κ2, σ2, σpc ∼ N
(
γC∗ , κ

2 ∗H−1
γC

)
(A.9)
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where

HγC ≡ wC′wC + HγC

γ̂C ≡
(
wC′wC

)−1
wC′

[
φC − σpcup

]
γC∗ ≡ H−1

γC

(
wC′wC

)
γ̂C

and the vectors φP and φC are F × 1 vectors that collect the φf parameters.

A.4 Appendix: Convergence of the Sampler

To assess the convergence of the Gibbs’ sampler, we compute the CUMSUM statistic from

Yu and Mykland (1998). For a sequence of simulations {θn}Tn=1, the statistic is:

CSt =

(
1

t

t∑
n=1

θn − µθ

)
/σθ

where µθ and σθ are the mean and standard deviations taken over all T draws. If the

sampler converges, then the statistic will converge smoothly towards zero. We report the

CUMSUM statistics for the estimation in the fourth column of Table 4 in Figure A1. As

can be seen, the CUMSUM converges smoothly towards zero for the beta’s, gamma’s, and

the covariance parameters.

A final issue is how long it takes the sampler to “burn-in.” To shed light on this, we

present Figure A2 which displays the time series of the 1500 draws of the three covariance

parameters, σ2, κ2, and σpc from the same specification of Table 4. As can be seen, the

sampler reaches the stationary distribution in well under 500 draws.
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Table 1: Descriptive Statistics
Everybody Fathers Mothers Children

SRHS 2.484 2.489 2.726 2.279
(1.089) (1.129) (1.120) (0.998)

Age 43.133 49.325 48.627 35.415
(14.439) (14.224) (14.750) (9.994)

Sex (1=female) 0.591 0 1 0.546
(0.492) - - (0.498)

Years of Schooling 12.899 12.706 12.351 13.454
(2.629) (3.053) (2.693) (2.199)

White 0.609 0.711 0.560 0.600
(0.488) (0.453) (0.492) (0.490)

Black 0.363 0.256 0.412 0.376
(0.481) (0.436) (0.492) (0.484)

Family Income (2013 dollars) 42,996.14 50,798.24 38,506.15 42,808.62
(52,653.94) (57,307.60) (47,438.79) (53,876.90)

Notes: This table report reports the means and standard deviation (in parentheses) of each
variable. There were 6027 households in the sample.

Table 2: Ordered Logit Estimates
(1) (2) (3) (4)

Age 0.039∗∗∗ 0.042∗∗∗ 0.036∗∗∗ 0.038∗∗∗

(0.001) (0.001) (0.001) (0.001)
Sex (1=female) 0.414∗∗∗ 0.314∗∗∗ 0.310∗∗∗ 0.277∗∗∗

(0.020) (0.020) (0.020) (0.020)
White - -0.536∗∗∗ -0.298∗∗∗ -0.281∗∗∗

(0.075) (0.068) (0.066)
Black - 0.316∗∗∗ 0.349∗∗∗ 0.256∗∗∗

(0.076) (0.070) (0.067)
Years of Schooling - - -0.203∗∗∗ -0.176∗∗∗

(0.005) (0.005)
Family Income (2013 dollars) - - - -0.193

(0.009)
R2 0.0350 0.0516 0.0763 0.0807
F 6027 6027 6027 6027
∗ significant at the 10% level; ∗∗ significant at the 5% level; ∗∗∗ significant at the 1% level
Notes: This table reports the coefficient estimates from a series of ordered logit models in which
SRHS is regressed on exogenous covariates. Standard errors are reported in parentheses and are
clustered by households.
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Table 3: Reduced form Estimates of the IHA
(1) (2) (3) (4) (5)

IHA (σ̃pc) 0.247∗∗∗ 0.228∗∗∗ 0.160∗∗∗ 0.166∗∗∗ 0.197∗∗∗

(0.011) (0.012) (0.013) (0.013) (0.012)

Age X X X X X
Sex X X X X X
White - X X X X
Black - X X X X
Years of Schooling - - X X -
Family Income - - - X X

F 6027 6027 6027 6027 6027
∗ significant at the 10% level; ∗∗ significant at the 5% level; ∗∗∗ significant at the 1% level
Notes: We report estimates of the IHA from the “reduced form” model in Section 4. Robust
standard errors are reported in parentheses.
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Table 4: Parameter Estimates: Core Results
(1) (2) (3) (4) (5)

Parents

Age 0.0468
(0.0461,0.0472)

0.0444
(0.0410,0.0472)

0.0437
(0.0401,0.0477)

0.0450
(0.0403,0.0500)

0.0476
(0.0440,0.0511)

Sex (1=female)
0.234

(0.219,0.248)
0.181

(0.131,0.222)
0.201

(0.149,0.262)
0.173

(0.112,0.241)
0.165

(0.114,0.216)

White -
-0.273

(-0.485,-0.014)
-0.405

(-0.660,-0.185)
-0.0711

(-0.216,0.072)
-0.137

(-0.294,0.011)

Black -
0.627

(0.415,0.880)
0.327

(0.079,0.551)
0.530

(0.391,0.678)
0.539

(0.393,0.682)

Years of Schooling - -
-0.209

(-0.219,-0.199)
-0.159

(-0.174,-0.144)
-

Family Income (2013 dollars) - - -
-0.248

(-0.293,-0.208)
-0.335

(-0.360,-0.311)
Children

Age 0.0424
(0.0416,0.0434)

0.0400
(0.0377,0.0427)

0.0427
(0.0397,0.0453)

0.0425
(0.0397,0.0454)

0.047
(0.0438,0.0510)

Sex (1=female)
0.289

(0.269,0.310)
0.219

(0.174,0.266)
0.279

(0.226,0.337)
0.225

(0.168,0.280)
0.212

(0.154,0.274)

White -
-0.081

(-0.238,0.070)
-0.432

(-0.605,-0.260)
-0.277

(-0.474,-0.0767)

-0.246
(-0.432,-0.051)

Black -
0.341

(0.181,0.490)
-0.151

(-0.323,0.018)
-0.122

(-0.310,0.060)
-0.056

(-0.242,0.126)

Years of Schooling - -
-0.189

(-0.204,-0.176)
-0.135

(-0.153,-0.116)
-

Family Income (2013 dollars) - - -
-0.234

(-0.266,-0.202)
-0.318

(-0.343,-0.295)

σ2 1.566
(1.555,1.578)

1.667
(1.654,1.681)

1.849
(1.833,1.866)

1.866
(1.850,1.881)

1.824
(1.805,1.845)

κ2
1.325

(1.260,1.394)
1.419

(1.352,1.489)
1.553

(1.473,1.635)
1.535

(1.455,1.618)
1.500

(1.421,1.587)

IHA (σpc )
0.291

(0.262,0.313)
0.257

(0.217,0.288)
0.170

(0.122,0.205)
0.184

(0.147,0.221)
0.223

(0.189,0.263)
bias 15 % 11 % 7 % 10 % 12 %

pseudo-R2 0.251
(0.248,0.253)

0.250
(0.247,0.254)

0.252
(0.249,0.256)

0.251
(0.248,0.255)

0.248
(0.244,0.251)

F 6027 6027 6027 6027 6027

Notes: Means of parameter simulations are reported based off of 1500 simulations from the
posterior distribution (with the first 500 draws being discarded). 95 % confidence intervals are
reported below. bias is calculated per the formula in equation 6 and corresponds to the bias in
the IHA estimates in Table 3.
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Table 5: Parameter Estimates: Results - Different Cuts by Generation
(1) (2) (3) (4) (5)

Parents

Age 0.0460
(0.0454,0.0467)

0.0436
(0.0411,0.0461)

0.0431
(0.0402,0.0458)

0.0462
(0.0425,0.0502)

0.0470
(0.0436,0.0508)

Sex (1=female)
0.238

(0.223,0.253)
0.180

(0.140,0.217)
0.201

(0.157,0.245)
0.182

(0.136,0.233)
0.159

(0.114,0.212)

White -
-0.190

(-0.381,0.004)
-0.386

(-0.576,-0.187)
-0.118

(-0.279, 0.032)
-0.198

(-0.353,-0.052)

Black -
0.694

(0.507,0.888)
0.334

(0.148,0.524)
0.452

(0.300,0.605)
0.430

(0.284,0.573)

Years of Schooling - -
-0.204

(-0.213,-0.195)
-0.153

(-0.166,-0.139)
-

Family Income (2013 dollars) - - -
-0.284

(-0.319,-0.247)
-0.374

(-0.400,-0.350)
Children

Age 0.0418
(0.0407,0.0428)

0.0417
(0.0392,0.0447)

0.044
(0.0410,0.0470)

0.0487
(0.0454,0.0524)

0.0483
(0.0450,0.0517)

Sex (1=female)
0.239

(0.220,0.258)
0.218

(0.172,0.270)
0.283

(0.225,0.338)
0.261

(0.207,0.320)
0.214

(0.159,0.271)

White -
-0.407

(-0.584,-0.253)
-0.425

(-0.623,-0.243)
-0.273

(-0.469,-0.074)
-0.184

(-0.368,-0.013)

Black -
0.036

(-0.143,0.190)
-0.132

(-0.312,0.053)
-0.102

(-0.283,0.095)
0.047

(-0.136,0.243)

Years of Schooling - -
-0.194

(-0.209,-0.179)
-0.139

(-0.159,-0.117)
-

Family Income (2013 dollars) - - -
-0.227

(-0.262,-0.189)
-0.290

(-0.313,-0.264)

σ2 1.591
(1.579,1.603)

1.698
(1.684,1.712)

1.867
(1.852,1.884)

1.930
(1.911,1.951)

1.857
(1.836,1.880)

κ2
1.463

(1.394,1.539)
1.569

(1.493,1.649)
1668

(1.587,1.755)
1.700

(1.615,1.796)
1.652

(1.575,1.739)

IHA (σpc )
0.308

(0.272,0.343)
0.275

(0.244,0.308)
0.187

(0.152,0.223)
0.195

(0.162,0.242)
0.241

(0.213,0.277)
bias 20 % 17 % 17 % 15 % 18 %

pseudo-R2 0.249
(0.246,0.252)

0.249
(0.246,0.252)

0.252
(0.248,0.255)

0.251
(0.248,0.255)

0.246
(0.243,0.249)

F 6027 6027 6027 6027 6027

Notes: Per Table 4
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Figure 3: IHA Box Plots: Education by Generation
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Table A1: Sample Sizes by Year
Everybody Fathers Mothers Children

1984 10,231 2,669 4,266 3,296
1985 10,490 2,683 4,295 3,512
1986 10,614 2,688 4,285 3,641
1987 10,779 2,702 4,286 3,791
1988 10,841 2,660 4,261 3,920
1989 10,856 2,631 4,218 4,007
1990 11,289 2,718 4,400 4,171
1991 11,343 2,666 4,346 4,331
1992 11,647 2,668 4,386 4,593
1993 11,899 2,642 4,453 4,804
1994 12,270 2,719 4,543 5,008
1995 12,199 2,659 4,473 5,067
1996 12,161 2,596 4,411 5,154
1997 9,949 2,321 3,742 3,886
1999 10,076 2,259 3,672 4,145
2001 10,360 2,198 3,597 4,565
2003 10,592 2,126 3,534 4,932
2005 10,813 1,964 3,418 5,431
2007 10,969 1,876 3,257 5,836
2009 11,264 1,798 3,171 6,295
2011 11,248 1,658 2,991 6,599
2013 11,260 1,558 2,813 6,889
Total 243,150 52,459 86,818 103,873
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Table A2: Frequencies for Time Length in Panel
Years in Panel Frequency Percent Cumulative

1 20,400 8.39 8.39
2 19,240 7.91 16.30
3 18,125 7.45 23.76
4 16,943 6.97 30.73
5 15,711 6.46 37.19
6 14,815 6.09 43.28
7 13,984 5.75 49.03
8 13,197 5.43 54.46
9 12,496 5.14 59.60
10 11,709 4.82 64.41
11 11,124 4.57 68.99
12 10,591 4.36 73.34
13 9,867 4.06 77.40
14 8,005 3.29 80.69
15 7,526 3.10 83.79
16 7,074 2.91 86.70
17 6,630 2.73 89.43
18 6,171 2.54 91.96
19 5,693 2.34 94.30
20 5,203 2.14 96.44
21 4,694 1.93 98.37
22 3,952 1.63 100.00

Table A3: Reduced form Estimates of Rank-Rank Correlations
(1) (2) (3) (4) (5)

Rank-Rank Correlation 0.281∗∗∗ 0.242∗∗∗ 0.172∗∗∗ 0.163∗∗∗ 0.204∗∗∗

(0.017) (0.017) (0.017) (0.017) (0.017)

Age X X X X X
Sex X X X X X
White - X X X X
Black - X X X X
Years of Schooling - - X X -
Family Income - - - X X

F 4882 4882 4882 4882 4882
∗ significant at the 10% level; ∗∗ significant at the 5% level; ∗∗∗ significant at the 1% level
Notes: We report estimates of the rank-rank correlation based off of the “reduced form” model
in Section 4. We restricted the samples to values for which the parent’s rank was between the
10th and 90th percentile. Robust standard errors are reported in parentheses.
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Figure A1: CUMSUM Plots

40



Figure A2: Time Series Plot of Covariance Parameters
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