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Abstract

There is ample evidence that R&D investment is mildly pro-cyclical. Whereas the exist-

ing literature can explain the positive correlation between investment in R&D and output, the

moderate strength of the relationship remains under-explored. This paper develops a stochastic

expanding-variety endogenous growth model that accounts for the observed mild pro-cyclicality

of R&D. In the model, several firms may simultaneously make the same innovation. Research

projects innovated by many firms simultaneously are of higher quality, on average, and con-

tribute relatively more to the expansion of the knowledge stock in the economy. This delivers

an endogenous mechanism that breaks the otherwise perfect correlation between R&D and

output. A calibration of our model closely matches the cyclical properties of R&D.
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1 Introduction

It is a well-established empirical regularity that R&D investment is mildly pro-cyclical.1

Depending on the data source, the correlation between the cyclical components of R&D

and output is between 0.3 and 0.5.2 Whereas the existing literature has proposed several

mechanisms that can explain the sign of this relationship, its magnitude remains under-

explored.3 In particular, existing theoretical models predict near-perfect correlation between

output and R&D, which is at odds with the data.4

This paper complements the existing literature by developing an expanding-variety en-

dogenous growth model that can resolve the discrepancy. In our model, there is the possibil-

ity that several firms make the same innovation simultaneously. Innovations simultaneously

made by many firms contribute more, on average, to the expansion of the knowledge stock in

the economy, i.e. they are of higher quality. This mechanism delivers endogenous oscillations

in the economy and, as a consequence, mildly pro-cyclical R&D. A calibrated version of our

model closely matches the pro-cyclicality and volatility of R&D observed in the data.

The source of technological progress in our model is the invention and adoption of new

intermediate varieties. As in Gabrovski (2018) and Kultti et al. (2007), the innovation

process makes the distinction between potential innovations (ideas) and actual innovations

(new varieties). Upon entry into the R&D sector each firm is randomly matched with a

particular idea from a pool of feasible research avenues. In particular, the number of firms

matched with a given project is a Poisson random variable. This matching technology

generates the possibility that some ideas are simultaneously innovated by many firms while

others are not innovated at all.5 This feature allows our model to account for the commonly

1See, for example, Griliches (1990), Fatas (2000), Wälde and Woitek (2004), Comin and Gertler (2006),
Barlevy (2007), Ouyang (2011), Fabrizio and Tsolmon (2014), and Sedgley et al. (2018).

2For further details see, for example, Comin and Gertler (2006), Francois and Lloyd-Ellis (2009), and
section three of this paper.

3See, for example, Fatas (2000), Comin and Gertler (2006), Barlevy (2007), and Francois and Lloyd-Ellis
(2009).

4This is the case in both papers that develop expanding-variety growth models (see, for example, Comin
and Gertler (2006)) and papers that develop Schumpeterian growth models (see, for example, Francois and
Lloyd-Ellis (2009)).

5For previous growth models that feature simultaneous innovation in the same sector or of the same
project see, for example, Corriveau (1998) and Gabrovski (2018).
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observed in practice phenomenon of simultaneous innovation.6 When a firm is matched with

an idea and successfully innovates that idea, it applies for a patent over the corresponding

variety. If more than one firm apply for the same patent, they each have an equal chance of

receiving it. We follow Romer (1990) and Kortum (1997), among others, and assume that

knowledge is cumulative — inventing a new variety allows firms to “stand on the shoulders

of giants” and gain technological access to a number of new projects.

Each variety is equally productive, but innovations differ in the number of new research

avenues they generate, i.e. their “quality”. In particular, innovations made simultaneously

by many firms lead to more research avenues, on average. This captures the intuition that i)

when firms invest more in a given project, it is more likely to be of higher quality; ii) when

more firms work simultaneously on the same project, it is more likely that at least one of

them will develop a high quality invention.

The main contribution of our paper is the model’s ability to reproduce the mild pro-

cyclicality of R&D observed in the data. In our model the correlation between output and

R&D is 0.43 and R&D is 1.77 times as volatile as output. In the data, the correlation is

0.3 − 0.5 and the relatively volatility of R&D is 1.79 − 1.9 times that of output.7 In our

model, innovations made simultaneously by many firm are, on average, of higher quality. This

generates a mechanism which leads to endogenous oscillations. As a result, R&D investment

is mildly pro-cyclical. In particular, following a positive technology shock both R&D and

output converge to their new, higher balanced growth paths (BGP henceforth). Thus, their

cyclical components are positively correlated. However, during this transition both series

oscillate around their convergent paths in such a way that whenever output overshoots its

convergent path, R&D investment undershoots it and vice versa. This reduces the strength

of the relationship and leads to mildly pro-cyclical R&D.

To see the intuition behind the endogenous oscillations, suppose that at a given period,

τ , the economy features relatively more varieties and relatively less available research av-

6For example, on February 14, 1876 Alexander Bell and Elisha Gray applied for a patent over the tele-
phone within hours of each other. This same phenomenon is observed with virtually every major innovation
from history, such as the cotton gin, the steam engine, the laser, and the computer (see, for example, Lemley
(2011)). Furthermore, instances of simultaneous innovation have also been documented in many cases for
non-major innovations as well (see, for example, Cohen and Ishii (2005) and Gabrovski (2018)).

7See Comin and Gertler (2006), Francois and Lloyd-Ellis (2009) and section three of this paper.
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enues. This scarcity of ideas implies that there will be few innovations made and, as a result,

relatively less varieties next period. This relatively low number of varieties at τ + 1 im-

plies lower competition between firms and increases the expected profitability of innovation.

Hence, firms have more incentives to enter the R&D sector. This in turn leads to higher

congestion in the “market” for ideas (i.e. relatively higher ratio of firms to ideas) and to a

higher average number of firms that simultaneously innovate the same idea. Because of this,

the average quality of innovations is higher, which leads to more feasible research avenues

at period τ + 1. Thus, at period τ + 1 the economy features relatively more ideas and less

varieties. As a result, at that period, there is relatively more innovation which leads to more

varieties at τ + 2. This then leads to lower expected profits and lower incentives for firms to

enter the R&D sector, which ultimately leads to lower mass of ideas at τ + 2. Furthermore,

in periods when there are more varieties output is relatively high, whereas R&D investment

is relatively low because research avenues are scarce. Conversely, when ideas are relatively

abundant R&D investment is high and output is low because such periods feature a relatively

lower mass of varieties.

We proceed by introducing the environment and characterizing the equilibrium. Next, we

simulate the model and examine its impulse response functions and the oscillations therein.

Lastly, we show our model can match key moments in the data and this ability is driven by

the presence of endogenous oscillations.

2 The Economy

There are three types of agents in the economy — a final good producer, a unit measure of

consumers (households), and a continuum of R&D firms. Time is discrete and infinite. The

final good firm employs capital, labor, and intermediate varieties, which it uses to produce

a single final good. Consumers supply labor, own the capital stock and the R&D firms, and

consume the final good. R&D firms employ labor and engage in innovative activities. Firms

that successfully innovate and patent a variety produce that variety.
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2.1 Final Good Sector

The final good, Yt, is produced by a single price taker. The price of the final good is

normalized to unity. We follow Comin and Gertler (2006) and endow the firm with the

following technology:

Yt = At(K
α
t L

1−α
Pt

)1−σ
(∫ Nt

0

Xλ
t (n)dn

)σ
λ
, α, σ, λ ∈ (0, 1) (1)

The firm rents capital, Kt, from households at the rate rt + δK , where δK is the depreciation

rate of capital and rt is the households’ rate of return. The firm faces a competitive market

for labor in production, LPt , which is hired at the wage wt. Xt(n) is the amount of a

particular variety n employed in production and Nt is the mass of intermediate varieties.

The final good firm faces a monopolistically competitive market for these varieties, where a

unit of each variety n is bought at the price Pt(n).

We follow the RBC literature and assume the only source of aggregate uncertainty in

the model is a productivity shock. In particular, the productivity parameter, At, follows an

AR(1) process in logs:

At+1 = Aρtut+1 (2)

where ρ ∈ (0, 1) is a persistence parameter and ut+1 is a unit mean shock with variance σu.

The usual profit maximization of the final good firm implies the following demand func-

tions for labor in production, capital, and intermediate varieties:

wt = (1− α)(1− σ)
Yt
LPt

(3)

rt = α(1− σ)
Yt
Kt

− δK (4)

Pt(n) = σXλ−1
t

Yt∫ Nt
0
Xλ
t (n)dn

(5)

2.2 R&D Sector

The novel featues of our model are contained within the R&D sector. The innovation process

consists of three stages and makes the distinction between potential innovations (ideas)
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and actual innovations (new varieties). At stage one, firms enter the R&D sector at a

cost η/(NtAt) units of labor. The entry cost depends on both the knowledge stock of the

economy and the aggregate productivity, At. As in Romer (1990), among others, the cost

of innovation decreases as the mass of varieties expands, which allows the model to exhibit

positive long-run growth. In the spirit of the RBC literature, our model features an economy-

wide productivity shock. To this end, we follow Bilbiie et al. (2012) and assume that the

entry cost is decreasing in At. Let µt be the mass of R&D entrants and LRt be the total

amount of labor employed in R&D. Then, the economy-wide research production function

is given by

µt = AtNtLRtη
−1 (6)

At stage two, firms are matched with a particular idea from a finite mass νt of feasible

research avenues. The matching technology is such that the number of firms matched with

a particular idea is a random variable that follows a Poisson distribution with a mean equal

to the tightness in the market for ideas, θt = µt/νt. This allows our model to account for the

phenomenon of simultaneou innovation observed in practice. Due to the uncertainty in the

matching process some research avenues are innovated by many firms simultaneously while

others are not innovated at all, but on average there are θt firms working on the same project.

The likelihood of simultaneous innovation is captured by the market tightness — a higher θt

implies the market is relatively more congested and as a result the average number of firms

which innovate the same idea is higher. Furthermore, this particular matching technology

allows us to capture the oordination frictions in the market for ideas.8

Ideas are ex-ante identical. If an idea is invented, it transforms into exactly one new

variety. Innovation is uncertain and takes one period to complete. A firm which enters at

time t is successful in innovating its project at time t+1 with probability p. With probability

1−p the firm fails and so it exits the innovation sector. This implies that the number of firms

which successfully innovate a particular idea follows a Poisson distribution with mean pθt.
9

If a firm successfully innovates an idea, it applies for a patent over the corresponding variety.

Each variety is protected by a single patent — in the event that several firms innovate the

8For further details see Gabrovski (2018).
9See, for example, Kultti et al. (2007).
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same idea simultaneously, each receives the patent with equal probability.

At stage three, firms that have secured a patent over a variety produce it in a monopo-

listically competitive market. We normalize the average and marginal costs of production to

unity, so profits are given by πt(n) = (Pt(n)− 1)Xt(n). Patents grant perpetual monopoly,

but varieties become obsolete with probability δ. Thus, the value of holding a monopoly of

a variety n at time t, Vt(n), is given by

Vt(n) = Et

∞∑
i=t+1

(1− δ)i−tditπi(n) (7)

where dit is the stochastic discount factor.

A necessary condition for positive long-term growth in the model is that the mass of

ideas, νt, grows at a positive rate. We follow Kortum (1997) and Romer (1990), among

others, and assume that knowledge is cumulative. In particular, the act of innovating an

idea allows firms to “stand on the shoulders of giants” and gain access to new avenues for

research. Thus, innovating an idea at time t allows, on average, M(θt) new ideas to enter the

pool at time t+ 1. The function M(θt) is assumed to be increasing in the market tightness,

θt, and M(θt) > 1 for all positive θt. In our model varieties are equally productive, however,

the quality of innovations (as captured by M(θt)) is endogenous. The average number of new

research projects which enter the pool from the innovation of a single idea, M(θt), depends

on the market tightness. This allows our model to capture the intuition that i) the higher

is the R&D investment per project, the higher its expected quality; ii) whenever more firms

are working on the same project, it is more likely that at least one of them will develop a

high quality invention.10

To understand the intuition clearly, let us consider an example. Suppose that whenever a

firm innovates a particular idea, say a new computer microchip, the number of new research

avenues that stem from the innovation is a random variable with distribution F (q). This

number would, of course, depend on the technological characteristics of the microchip. The

size of the microchip and the temperature at which it runs determines the set of devices

10In particular, the average number of firms working on the same project is θt and the average R&D
investment per project is θtηwt/(NtAt).
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with which it can be integrated — a relatively large microchip may only be feasibly used in

desktop computers, if the chip is smaller it may also be feasibly integrated with laptops, if it

is smaller still it may be feasibly integrated with smartphones and/or smartwatches. Then,

suppose a new avenue of research, into say smartwatches, becomes available only when at

least one firm draws a sufficiently high quality, q. Thus, if exactly m firms successfully

innovate the microchip the number of new feasible R&D projects due to the invention of the

chip, k, would be the sample maximum, i.e. k ∼ F (k)m. Since the number of innovators,

m, follows a Poisson distribution with mean pθt, then the average number of new ideas

which become feasible from the development of a single innovation is given by M(θt) =∑∞
k=0 k(eF (k)pθt − eF (k−1)pθt)e−pθt/(1− e−pθt). Thus, the higher the expected number of firms

that work on the chip, θt, (or aalogously the higher the expected R&D effort devoted to the

development of the microchip, ηθt/(NtAt)) the higher the expected number of new avenues for

future research that become available from the innovation of the microchip. In practice, firms

may learn from each other’s innovations so the number of new projects may exceed the sample

maximum. Furthermore, the distribution F (q) is likely to depend on each firm’s research

intensity. Hence, we keep it general and do not endow M(θt) with a specific functional form.

Once a variety is innovated, it is no longer a potential R&D project, so the corresponding

idea is removed from the pool. As a result the average net increase in the stock of research

avenues from innovating one new variety is M(θt)−1. Furthermore, the matching technology

implies that only a fraction 1 − e−pθt of ideas are innovated each period. Then, the law of

motion for ideas is given by

νt+1 = (1− δ)νt + (1− δ)(1− e−pθt)(M(θt)− 1)νt (8)

where we assume varieties can become obsolete before they are innovated, i.e. their corre-

sponding idea can become obsolete.

As each innovated idea is transformed into a new variety, it follows that varieties have

the following law of motion

Nt+1 = (1− δ)Nt + (1− δ)(1− e−pθt)νt (9)
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2.3 Households

There is a unit measure of infinitely lived identical consumers. They discount the future with

a factor β and have the per-period utility function U(Ct, Lt) = lnCt − χL1+1/φ
t /(1 + 1/φ),

where Ct is consumption, Lt is labor hours, φ is the Frisch elasticity of labor supply, and χ

governs the disutility of labor. Since labor can be devoted to production or R&D, it follows

that

Lt = LRt + LPt (10)

Households own capital and have access to a mutual fund that covers all R&D firms. Let at

denote the amount of shares held by the representative household at the beginning of period

t. Firms distribute all profits as dividends, so the total assets of households in the beginning

of t are at
∫ Nt
0

(πt(n) + Vt(n))dn + (1 + rt)Kt. At time t households choose shares at+1 of

the mutual fund which covers all R&D firms even though a fraction δ of varieties become

obsolete next period. Thus, the household budget constraint is given by:

Kt+1 + at+1

∫ Nt+1

0

Vt(n)dn = (1 + rt)Kt + at

∫ Nt

0

(πt(n) + Vt(n))dn+ wtLt − Ct (11)

2.4 Equilibrium

Intermediate good producers maximize per period profits subject to the inverse demand

function given by equation (5). This yields Pt = 1/λ and

Xt = λσ
Yt
Nt

(12)

πt = (1− λ)σ
Yt
Nt

(13)

Yt = (At(σλ)σ)
1

1−σKα
t L

1−α
Pt

N
σ(1−λ)
λ(1−σ)
t (14)

Since the production function is symmetric, holding a monopoly over any variety is equally

profitable. Furthermore, profits depend on the amount of intermediate varieties, Nt, and on

the concavity of the production function. If σ/λ > 1, then the production function exhibits

increasing returns to scale and as a result profits are increasing in Nt. If, on the other hand,
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σ/λ < 1, then there are decreasing marginal returns to the extra variety and profits are

decreasing in Nt.

At stage one of the innovation process, free entry implies that

ηwt
AtNt

=
1− e−pθt

θt
Vt (15)

Each entrant must hire η/(AtNt) units of labor at the market wage wt, so the left hand side of

(15) captures the cost of engaging in R&D activities. Firms are successful in innovating with

probability p. If they do innovate, they receive the patent with probability
∑∞

m=0 Pr(exactly

m rivals successfully innovate the same idea)/(m + 1) =
∑∞

m=0 e
−pθt(pθt)

m/(m + 1)! =

(1 − e−pθt)/(pθt). Thus, the right hand side of (15) captures the expected benefit from

entering the R&D sector.

The first-order conditions of the representative household yield a standard labor supply

condition and the Euler equations:

wt = χCtL
1
φ

t (16)

1

Ct
= βEt

(
1

Ct+1

(1 + rt+1)

)
(17)

Vt = (1− δ)βEt

(
Ct
Ct+1

(πt+1 + Vt+1)

)
(18)

where (18) makes use of the symmetry in varieties and their law of motion. Furthermore,

the stochastic discount factor is dit = (β(1− δ))iCt/Ct+i.

Lastly, we can combine the consumer’s budget constraint, (11), with the demand for

capital, (4), for labor in production, (3), and the free entry condition, (15), to get the law

of motion for capital

Kt+1 = (1− δK)Kt + Yt −XtNt − Ct (19)
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3 Numerical Results

3.1 Calibration

Because of aggregate uncertainty and positive long-run growth, our economy follows a

stochastic BGP. We follow Comin and Gertler (2006) and study a loglinearization of the

stochastic BGP around its deterministic counterpart.11 Following the previous literature

(see, for example, Barlevy (2007)), calibrate the model at annual frequency. Hence, the

discount rate is set at β = 0.95. The capital’s share of output, α, is 0.33 and its depreciation

rate, δK , is 0.08. The materials’ share of output, σ, is set to 0.5 and the persistence param-

eter, ρ, to 0.88, as in Comin and Gertler (2006). Set the Frisch elasticity of labor supply,

φ, to 4 and normalize Lt = 1. This yields χ = 0.8472. Following Bilbiie et al. (2012), the

obsolescence rate of varieties, δ, is set to 0.1. The probability of successfully innovating a

research project, p, turns out to be a scaling parameter, so we normalize it to unity.

To pin down the entry cost, η, the gross markup, 1/λ, and the value of M(θt) along its

deterministic balanced growth path, M(θ), we use three balanced growth path restrictions.

First, we use data on the fraction of approved patent applications in the U.S. for the period

from 1966 to 2011.12 We match its empirical average of 0.60957 to its model counterpart, (1−

e−pθ)/(pθ). This yields θ = 1.0876. Second, we set the R&D share of output, ηwtµt/(NtAtYt),

to the average in the U.S. — 3.1194%.13 Third, we calibrate the growth rate of output to

its empirical counterpart for the period of 1.7546%. This yields η = 0.1879, 1/λ = 1.0841,

and M(θ) = 1.4168.

Lastly, to calibrate the volatility of the technology shock, σu, and the elasticity of M(θt)

along the balanced growth path, εM,θ, we use two second moment conditions. We set

σu = 0.01074 to match the standard deviation of per capita non-farm GDP in the data

of 2.7279%.14 To match the standard deviation of per capita patent applications, pµt, to its

11A detailed description of the deterministic and stochastic BGPs is included in the appendix.
12The data on both patents and patent applications is taken from the U.S. Patent and Trademark Office.

The data on patent grants is by year of patent applications.
13The data is taken from the U.S. Bureau of Economic Analysis. The data on non-farm GDP is in chained

2009 dollars and is taken from NIPA table 1.3.6. The data for R&D expenditures is from NIPA table 5.6.5
and includes software expenditures. To deflate the series for R&D we use the implicit GDP price deflator
from NIPA table 1.1.9.

14All per capita variables are normalized by the civilian non-institutionalized population. The data on
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empirical counterpart of 3.9786%, calibrate εM,θ = 8.97.

3.2 Impulse Response Functions

Because the model features endogenous growth, we construct the impulse response func-

tions as percentage deviations from the deterministic balanced growth path of the economy

(Figures 1 and 2). Following a positive technology shock, the economy converges to a new,

higher BGP. Output, consumption, investment in R&D, labor hours, investment, and prof-

its initially increase and overshoot their new BGPs. In subsequent periods, they gradually

converge to the higher BGP. Varieties, on the other hand, converge to the new BGP without

initially overshooting it.

As is evident from the impulse response functions, the model exhibits endogenous oscil-

lations. Whereas all variables feature these oscillating behavior, it is more pronounced in

the ones that describe the R&D sector. In particular, the pool of ideas, the mass of en-

trants, the market tightness, and labor hours in research all oscillate around their new BGP

following a positive technology shock. Since the tightness, θt, and labor hours in research,

LRt , are constant along the BGP, they converge to their old levels. The main reason why

the oscillations are more pronounced in the R&D sector is twofold. First, households want

to smooth consumption and leisure, so they dislike volatility in total labor hours, output,

spending on varieties, and total investment. Thus, the oscillation is least apparent in these

variables. Second, the main driver behind the oscillations in the economy is the market for

ideas, so variables associated with it exhibit higher magnitude oscillations.

To see the intuition behind why the model exhibits endogenous oscillations, suppose

that at period τ there are relatively more varieties, Nτ , and relatively fewer ideas, ντ . The

scarcity of ideas implies that the number of innovations, (1−e−pθτ )ντ , is relatively low as well.

This in turn leads to a low number of varieties the next period, Nτ+1. Then, by equation

(13), expected profits next period, Eτπτ+1, are high since there is relatively less competition

between intermediate good producers.15 At the same time, higher mass of varieties, Nτ ,

decreases the cost of innovation. Both the lower entry cost and higher expected profits

this is taken from the Bureau of Labor Statistics’ Employment Situation Release.
15Expected profits are decreasing in the number of varieties next period because in our calibration σ < λ.
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(a) Output (b) Consumption

(c) R&D (d) Market Tightness

(e) Pool of Ideas (f) Varieties

Figure 1: Impulse Response Functions to One Standard Deviation Shock in Productivity
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(a) Entry (b) Profits

(c) Hours in Research (d) Hours in Production

(e) Hours (f) Investment

Figure 2: Impulse Response Functions to One Standard Deviation Shock in Productivity
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create incentives for firms to enter the R&D sector. As a consequence the market tightness,

θτ , increases. The resulting higher congestion implies that more firms, on average, innovate

the same idea simultaneously. This leads to a higher average quality of innovation, M(θτ ),

and as a consequence to relatively abundant research projects the next period, ντ+1. Thus,

at τ + 1 there are relatively low number of varieties, Nτ+1, and relatively high number of

ideas, ντ+1. Because of high ντ+1, the number of innovations at time τ + 1 and subsequently

the number of varieties Nτ+2 are relatively high. This leads to relatively low expected profits,

Eτ+1πτ+2. Because of lower expected profits and because of the relatively high entry cost at

time τ + 1 (due to low Nτ+1), firms have less of an incentive to innovate. This induces low

market tightness, θτ+1. Hence, fewer firms innovate the same project simultaneously which

results in lower average quality of innovations. Thus, ντ+2 is relatively low. At time τ + 2

the cycle repeats.

3.3 Cyclicality and Second Moments

Table 1: Moments for Data and Model

σX/σY Corr(X, Y )

Variable X Data
Benchmark

Model
Exogenous

Quality Data
Benchmark

Model
Exogenous

Quality
R&D 1.79 1.77 0.81 0.43 0.43 0.96

Consumption 0.69 0.54 0.53 0.90 0.93 0.93
Hours 0.70 0.41 0.42 0.83 0.92 0.93

Investment 2.39 2.62 2.67 0.91 0.97 0.97

The endogenous oscillations in our model deliver mildly pro-cyclical R&D investment.

This is in contrast to the existing literature which predicts near-perfect correlation between

output and R&D.16 Specifically, in periods when varieties are relatively abundant, output

is relatively high because the final good firm can employ a wider range of intermediaries in

production. These periods also feature a low mass of available research projects. As a result

fewer firms engage in R&D.17 This leads to low aggregate R&D investment. In contrast,

during periods with relatively less varieties, output is low. At the same time, ideas are

16See, for example, Comin and Gertler (2006) and Francois and Lloyd-Ellis (2009).
17This is true even though such periods feature a relatively high market tightness, θt.
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(a) Output (b) Consumption

(c) R&D (d) Market Tightness

(e) Pool of Ideas (f) Varieties

Figure 3: Impulse Response Functions with Exogenous Innovation Quality
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(a) Entry (b) Profits

(c) Hours in Research (d) Hours in Production

(e) Hours (f) Investment

Figure 4: Impulse Response Functions with Exogenous Innovation Quality
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abundant, so entry into R&D, and consequently R&D investment, are high. Thus, although

following a positive technology shock both output and R&D investment converge to a new,

higher BGP, they oscillate around their convergent paths in such a way that whenever output

overshoots its path, R&D undershoots it and vice versa.

Table 1 reports the standard deviations and cyclical properties of the data and our

economy.18 The model matches the empirical moments remarkably well. In particular, it is

able to reproduce the mild procyclicality of R&D and its relative volatility. Alternative data

sources for R&D yield a correlation with output between 0.3 and 0.5, and relative standard

deviation of R&D around 1.9 times that of output.19 The model does well against these

alternative measures as well.

The third and last columns of Table 1 highlight the importance of the endogenous quality

in innovation for the model’s ability to match the data. These columns report the moments

for the model when innovation quality is exogenous, as captured by M(θt) being a constant,

i.e. εM,θ = 0. In that specification, the economy does not feature endogenous oscillations

(see Figures 3 and 4). Hence, the mechanism which induces R&D to overshoot (undershoot)

its convergent path whenever output undershoots (overshoots) it is broken. Thus, output

and R&D move very closely together and their correlation is almost perfect. Furthermore,

the absence of oscillations decreases the relative volatility of R&D by about one half.

4 Conclusion

This paper develops an expanding-variety endogenous growth model that can account for the

empirically observed mild pro-cyclicality of R&D investment. In the model, some firms make

the same innovation simultaneously. Varieties invented by many firms simultaneously are,

on average, of higher quality and so contribute more to the expansion of the knowledge stock

in the economy. This mechanism gives rise to endogenous oscillations — periods of relatively

scarce research projects and abundant varieties are followed by periods during which research

18The data is obtained from the U.S. Bureau of Economic Analysis. Investment in the model corresponds
to investment in physical capital and in R&D.

19Francois and Lloyd-Ellis (2009) use data from Compustat and find a correlation of 0.5 and relative
standard deviation of 1.9. Comin and Gertler (2006) find a correlation of 0.3 and standard deviation of 1.89
using data from the National Science Foundation.
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projects are abundant and varieties scarce. Following a positive technology shock both output

and R&D converge to a new, higher BGP. Thus, they are positively correlated. Due to the

oscillations in the model, however, both variables fluctuate around their convergent paths in

such a way that whenever R&D overshoots its path, output undershoots it and vice versa.

Thus, R&D is only mildly pro-cyclical.
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5 Appendix

Characterizing the deterministic balanced growth path. Along the deterministic

balanced growth path variables grow at the following rates

Proposition 1. Along the deterministic balanced growth path θt, LPt, LRt, Lt, rt are all

constant. The growth rates of Nt, νt, and µt are given by (1− δ)(e−pθ + (1− e−pθ)M(θ))− 1,

where θ is the value of θt along the deterministic BGP. The growth rates of Yt, Ct, Kt, wt

are given by (1 + gN)σ(1−λ)/(λ(1−σ)(1−α)) − 1. Moreover, the growth rate of profits is given by

(1 + gY )/(1 + gN)− 1.
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Proof. First, it is clear that gLP = gLR = gL = 0. Then, from (17) a constant growth rate

of consumption implies that the return on capital, rt, must be constant. Thus, from the

final producer’s first order condition with respect to capital, (4), we have that gY = gK .

Moreover, from the first order condition with respect to labor in production, (3), it follows

that gw = gY . Next, from the solution for intermediate goods, (12), and the law of motion

for capital, (19), it follows that gK = 1− δK + ((1−λσ)Yt−Ct)/Kt. As gK is constant along

the BGP, it follows that gK = gC .

As gK = gY and gLP = 0, from the production function in equilibrium, (14), it follows

that gY = (1+gN)σ(1−λ)/(λ(1−σ)(1−α))−1. Next, from the solution for profits, (13), it must be

the case that gπ = (1 + gY )/(1 + gN)− 1. Thus, from the Bellman equation for the value of

a monopoly, (18), and from the fact that gC is constant, it follows that gπ = gV . Then, free

entry, (15), implies that gθ = 0. Hence, the growth rates of varieties and ideas must equal to

each other, gµ = gν . Thus, the law of motion for varieties, (9), implies that gN = gν . Lastly,

the law of motion for ideas, (8), implies that gν = (1− δ)(e−pθ + (1− e−pθ)M(θ))− 1.

�

We cannot explicitly solve for all variables along the deterministic balanced growth

path. Instead we reduce the model to a system of eleven equations and unknowns in or-

der to provide an implicit solution. Let xt := νt/Nt; zt := Yt/Ct; nt := Kt/Ct; γt :=

N
σ(1−λ)/(λ(1−σ)(1−α))
t /K1−α

t . Omitted time subscripts denote variables along the determinis-

tic balanced growth path.

From the laws of motion for varieties and ideas, (9) and (8), it follows that

x =
( e−pθ

1− e−pθ
+M(θ)

)
− 1

1− e−pθ
(20)

From the law of motion for capital, (19), it follows that

gY = −δK + (1− λσ)
z

n
− 1

n
(21)
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Next, from the Euler equation, (17), and the fact that gY = gC it is immediate to see that

gY = β(1 + r)− 1 (22)

The equation for demand for capital, (4), gives us

r = α(1− σ)
z

n
− δK (23)

Next, from the research production function, (6), we have that

xθ = ALRη−1 (24)

Combining the demand for labor in production, (3), and the households’ supply decision for

labor, (16), we get

(1− α)(1− σ)z = χL
1
φLP (25)

Next, using (18), (15), and (13)

ηθ

A(1− e−pθ)LP
=

(1− δ)β(1− λ)σ

(1− α)(1− σ)(gN − (1− δ)β)
(26)

From the resource constraint for labor, it is clear that

L = LP + LR (27)

Next, from the definition of zt and the production function in equilibrium, (14), one gets

z = (A(σλ)σ)
1

1−σnLP 1−αγ (28)

Lastly, from proposition 1, it follows that

gy = (1 + gN)σ(1−λ)/(λ(1−σ)(1−α)) − 1 (29)

gN = (1− δ)(e−pθ + (1− e−pθ)M(θ))− 1 (30)
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Equations (20) through (30) for a system of eleven equations and eleven unknowns (x, z, γ,

n, r, L, LP , LR, θ, gY , and gN) that characterizes the deterministic balanced growth path.

Characterizing the stochastic balanced growth path. The behavior of our economy

along its stochastic balanced growth path is described by a system of first order difference

equations in xt, nt, γt, At, and θt and equilibrium conditions for rt, zt, Lt, LPt , and LRt .

From the laws of motion for varieties and ideas, (8) and (9), we get the law of motion for

xt

xt+1 =
(e−pθt + (1− e−pθt)M(θt))xt

1 + (1− e−pθt)xt
(31)

Next, from the resource constraint, (19), and the Euler equation, (17), we can derive the law

of motion for nt

βEt(nt+1(1 + rt+1)) = (1− δK)nt + (1− λσ)zt − 1 (32)

To get the law of motion for θt we combine (18), (15), (13), (9), and (3) to get

βEt

(
zt+1

( (1− λ)σ

(1− α)(1− σ)
+

ηθt+1

At+1LPt+1(1− e−pθt+1)

))
=
ηθt(1 + (1− e−pθt)xt)zt

AtLPt(1− e−pθt)
(33)

From the law of motion for varieties, (9), and capital, (19), we can derive the law of motion

for γt

γt+1 =
(1− δ)

σ(1−λ)
λ(1−σ) (1 + (1− e−pθt)xt)

σ(1−λ)
λ(1−σ)n1−α

t

((1− δK)nt + (1− λσ)zt − 1)1−α
γt (34)

The last law of motion is simply the evolution of the technology parameter At, (2). The

equilibrium relationships are derived in the exact same way as the corresponding equations

along the deterministic BGP and are as follows.

rt = α(1− σ)
zt
nt
− δK (35)

xtθt = AtLRtη
−1 (36)

χL
1
φ

t LPt = (1− α)(1− σ)zt (37)

Lt = LPt + LRt (38)

zt = (At(σλ)σ)
1

1−σntL
1−α
Pt

γt (39)
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These ten equations (31) through (39) along with (2)) form the dynamical system which

describes the economy along its stochastic BGP.
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