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Abstract

This paper presents a game theoretic model to analyze transna-
tional river resource conflicts such as the Indus River Basin conflict
between Pakistan and India. The model demonstrates that to obtain
a share of the river resources from the upstream country downstream,
the downstream country must purchase costly armaments to threaten
an invasion. Yet in this process, the upstream country has a signif-
icant first-mover advantage in extracting the river resource as it can
internalize the threat of invasion and prevent it from happening in
the non-invasion equilibrium “Peace with Threat of War”. When the
upstream country does not internalize the threat of invasion from the
downstream country, the invasion equilibrium “War” occurs. This pa-
per discusses the implications of each equilibria in the model within
the context of the Indus River Basin conflict. This paper also discusses
the possibility of Pareto-improving cooperative outcomes by imposing
new institutional frameworks.
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1 Introduction

One of the most serious and persistent conflicts in the post-World War Two
international order has been the conflict between India and Pakistan. The
two countries have fought four wars against one another and today are both
nuclear powers. While the Indo-Pakistani conflict has many causes such
as religion and nationalism, controlling natural resources for their expand-
ing populations is also a key structural element that runs beneath the many
stated grievances between the two nations. Controlling fresh water is partic-
ularly important for both countries; they are competing to control the Indus
River Basin, the principal source of fresh water in the South Asian region.
Recently, water shortages in Pakistan and rising tensions in both Pakistan
and India means that the competition over controlling the Indus River Basin
has the possibility of escalating into a full war (Kugelman, 2016).

The focal point of the Indus River Basin conflict is the Kashmir terri-
tory, a valley situated between Pakistan and India that has been effectively
partitioned between the two states since their independence from the British
Empire in 1947. The Kashmir Valley’s watershed at the head of the Indus
Basin is the principal water supply for large parts of Northern India, all
of Pakistan, and parts of Central Asia that would otherwise extremely dry
(FAO, 2017). Currently, India is in control of the upstream portions of the
Indus River Basin’s key tributaries, including the Indus River itself. The
result is that India has almost complete upstream control of the Indus River
Basin before it flows into Pakistan. This is especially problematic for Pak-
istan, as the Indus River Basin makes up over 80 percent of Pakistan’s total
water supply (FAO, 2017). Pakistan has responded to India’s upstream
control of the Indus Basin with the threat of, and at times, actual use of
military force. Throughout the four Indo-Pakistani wars, Pakistan has re-
peatedly invaded the Kashmir territory in an effort to gain more control
of it (Bose, 2003). Today, Pakistan and India still station large numbers of
troops in the Kashmir while Pakistan allegedly supports Islamic partisan (or
terrorist) groups in the Indian controlled portions of the region (Kugelman,
2016).

The purpose of this paper is to analyze this Indus River Basin conflict
from a game theoretic perspective and understand the conflict at a structural
level. The paper will do this by constructing a simple game-theoretic model
of competition between two countries over a shared transnational resource
that includes the potential for armed conflict. This model developed in this
paper can also be expanded to model other transnational river conflict across
the world including the Mekong River conflict and the Nile River conflict.
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This paper will construct a two player game that focuses on the se-
quential extraction of a river resource with a fixed endowment. The game
includes two countries: one country is situated upstream on the transna-
tional river and the other is situated downstream. Both countries extract
water resources from the river, but the upstream country extracts its wa-
ter resources first in a sequential game due to its geographic position. The
downstream country has the ability to purchase armaments and invade the
upstream country should it want to, inflicting costs both on itself and the
upstream country, but in doing so is able to capture more of the river re-
source for itself. This game-theoretic model is intentionally highly simplified
compared to the complex nature of real-world transnational river conflicts
such as the Indus conflict, and therefore the analysis the game offers is lim-
ited to broad observations and recommendations at the structural level. The
recommendations the model offers include insights into how the Indus River
Basin conflict can be solved by international institutions and agreements in
such a way that benefits both India and Pakistan.

The most significant insight from the analysis of the model is that the
armaments purchased by the downstream country, and threat of invasion
carried by them, function as a mechanism for reallocating water resources
from the upstream country to the downstream country. The armaments are
costly, however, which makes them a inefficient mechanism for allocating the
water resources between the two countries. This implies that there exists
Pareto-improving outcomes where the water resource is allocated coopera-
tively without the purchase of armaments. The interpretation of this result
in the Indus Basin conflict is that Pakistan, as the downstream country in
the Indus Basin, is forced to spend heavily on its military and constantly
threaten India as a mechanism for securing water resources. This non-
cooperative equilibrium leaves both Pakistan and India worse off, yet there
is an opportunity to solve the Indus Basin conflict with a Pareto-improving
cooperative agreement.

In the next section I will discuss relevant economic literature in the field
of international resource competition and how this paper adds to it. Next,
in the third section, I will introduce the two country game setup, show the
two possible types equilibria, and give a brief discussion of the equilibria
and there interpretation in the Indus Conflict. In the fourth section, I will
discuss the comparative statics of the game and discuss their relevance in
the Indus Basin conflict. In the fifth section I will consider the existence
of Pareto-improving cooperative outcomes and potential mechanisms that
could be used to achieve those outcomes. I will also discuss how those
mechanism could be implemented in the Indus Basin conflict. In the sixth
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section, I will conclude with a discussion of model extensions and potential
applications beyond the Indus Conflict.

2 Literature Review and Contribution

This paper and the model it develops considers transnational river disputes
from a game theoretical perspective of resource competition; it draws from
and will contribute to the economic literature in that field. The paper prin-
cipally builds off the model developed by Acemoglu et al. (2012). Acemoglu
et al’s model considers country level strategic decisions in the context of non-
renewable resource extraction with the potential for interstate war. Their
model uses the framework of a resource that is completely controlled by one
resource-rich country, extracted dynamically over many time periods, and
sold to the other resource-poor country which also posses military capabili-
ties to invade the resource-rich country. This paper will build off Acemoglu’
et al’s game framework of two countries competing over a resource with the
military armament and potential invasion components. The major difference
that this paper offers is that the resource of interest, a shared transnational
river, is geographically differentiated between two countries and sequentially
extracted in one time period. Therefore the paper does not consider the dy-
namics of resource extraction, but focuses on the allocation or resources
through power mechanisms including the sequential order of resource ex-
traction derived from geographic positioning. The game developed in this
paper, albeit simple, is readily applicable to the Indus River Basin conflict
and other transnational river conflicts.

This paper provides theoretical support for the empirical claim made
by Caselli et al. (2015) that competition over transnational resources is a
significant determinant of interstate war. The authors’ hypothesis in Caselli
et al. (2015), for which they develop a empirical body of evidence, is that
when resource-poor countries are close geographically to another resource-
rich country, it increases the incentive for the resource-poor country to go to
war to try and capture at least some of the resources from the resource-rich
country. This paper investigates this empirical claim by considering a game-
theoretic model of resource-based interstate war when there are transna-
tional resources that cross bilateral borders. In the model, the downstream
country, potentially a resource-poor country due to the upstream country’s
river resource extraction, can have a strong incentive to go to war to capture
more of the river resource.

Similarly, the model developed in this paper provides additional theoret-
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ical support for the claims made by Koubi et al. (2014). The authors survey
relevant economic and international relation literature for a meta analysis
of the causes of resource conflicts. The authors make the case for resource
abundance, rather than scarcity, being a better predictor of interstate con-
flict. This is due to the potential payoff for the aggressor country being
greater when it can capture more resources in war. In this paper’s game,
when the upstream country extracts a large amount of the river resources,
it creates a resource abundance for itself that the downstream may decide
to exploit through a war.

The model in this paper incorporates the “guns-and-butter” trade-offs of
armament decisions by countries as developed by Powell (1993) and adapted
by Acemoglu et al. (2012). Powell creates a model of arms procurement
where armament produces positive societal utility for a country, but the
armament is also costly: guns versus butter. Powell’s model considers arms-
race competitions between nations and how they may dynamically spiral
out of control to where countries buy many more guns then they otherwise
would have wanted, creating an efficiency loss. The model in this paper does
not consider traditional arms races like Powell (1993) as only one country
can purchase armaments, but instead explores how societies may suffer an
efficiency loss due to one country using armament purchases as resource
reallocation mechanism.

Finally this paper contributes to the body of theoretical work on the
political economy of natural resources and interstate conflict developed by
Tornell and Lane (1999), Ross (1999), Caselli (2006), Robinson et al. (2006),
Egorov et al. (2009), Yared (2010), and Robinson and Acemoglu (2012).

3 Environment

3.1 Model Setup

Consider a simple, single-period, two country game where Country A and
Country B are situated along a transnational river. Country A is geograph-
ically positioned upstream of Country B. Both countries extract water re-
sources from the river in quantities denoted by XA ≥ 0 and XB ≥ 0. The
total endowment of river resources that is available to be extracted is given
by E > 0. For simplicity, Country B extracts all of the remaining river
resource endowment that Country A does not extract:

XB = E −XA
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Both countries gain utility from the river resources they extract:

uA(XA, ...)

uB(XB, ...) = uB(E −XA, ...)

The utility functions satisfy the following assumption:

Assumption 1. The utility functions are strictly increasing u′i(·) > 0, are
concave u′′i (·) < 0, and are continuously twice differentiable for both coun-
tries i = A,B. Both utility functions also meet the following Inada condi-
tions: limXi→0 u

′
i(Xi) =∞ and limXi→∞ u

′
i(Xi) = 0.

Country B is able to purchase armaments, denoted by mB ≥ 0, at a
cost given by the function l(mB). The cost function satisfies the following
assumption:

Assumption 2. The cost function l(·) is strictly increasing l′(mB) > 0 and
convex l′′(mB) > 0, which indicates that there is an increasing marginal cost
of armament for Country B.

If Country B decides to purchase any amount of armaments greater than
zero, it has the ability to invade Country A. If Country B invades, it shrinks
Country A’s resource extraction to a fraction between zero and one, given
by the invasion function w(mB) ∈ (0, 1). This models Country B destroying
Country A’s ability to extract resources upstream with dams and other
hydro infrastructure. After an invasion, Country A’s resource extraction is
limited to XA × w(mB). Country B, by virtue of being downstream and
exacting all the remaining resources from the river, gains in its extraction
whatever Country A losses in the invasion: XB = E − XA × w(mB). For
simplicity, there is no efficiency loss in this process: Country B steals through
the invasion exactly what Country A loses. The invasion function satisfies
the following assumption:

Assumption 3. The invasion function w(·) is decreasing w′(mB) < 0 for
∀mB > 0 and is fully differentiable for all positive values of mB. Addi-
tionally, the w(·) function satisfies the following properties: w(0) = 1 and
limmB→∞ w(mB) = 0.

Finally, there are fixed costs of invasion for both countries, denoted CA >
0 and CB > 0 for Country A and Country B respectively. The game will
play out in sequential moves as follows:

1. Country B purchases its armaments mB ≥ 0 at a cost given by l(mB).
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2. Country A chooses its extraction amount: XA ∈ [0, E].

3. Country B chooses to invade Country A or not: I = {0, 1} where
I = 1 is an invasion and applies the given fixed cost to both countries
{CA × I, CB × I}.

4. Country B extracts all remaining river resources not extracted by
Country A including the resources stolen in the invasion.

The game sequence and the endgame payoffs for each country are shown in
figure 1 below:

Figure 1: The game sequence and the possible payoffs

Regarding the payoffs shown in figure 1, if Country B decides to not
invade Country A, Country A gets the utility from the river resources it
extracted and Country B gets the utility from the leftover river resources
minus the cost of any armament purchases it made. If Country B decides to
invade, Country A loses a fraction of its resource extraction and suffer a fixed
cost from the invasion. Country B gains Country A’s lost river resources,
but Country B pays for the cost of its armament purchases and also suffers
a fixed cost of the invasion.

A sub-game perfect Nash equilibrium exists for this game when the func-
tions ui(·), w(·), l(·) are well defined, common knowledge between players,
and meet Assumptions 1-3 shown above. This follows from the theorem
developed by Harris (1985) that sub-game perfect Nash equilibria always
exist in deterministic continuous games with perfect information. A slight

7



modification is necessary to account for the finite third-stage of the game,
but a equilibrium exists for each possible sub-game at the ends nodes of
invasion and non-invasion, and therefore the sub-game perfect Nash equi-
librium exists. For a full proof of existence of equilibrium, see Appendix
A.

3.2 Equilibrium Analysis

There are only two possible types of sub-game perfect Nash equilibrium
which occur depending on functional forms and parameter values in the
game.1 There is one possible equilibrium where an invasion occurs, and
there is one equilibrium where an invasion does not occur. See figure 2 be-
low for a depiction of the potential sub-game perfect Nash equilibria:

Potential Types of Sub-game Perfect Nash Equilibria

Country A prevents
an invasion

Non-Invasion Equilibrium:
“Peace with

Threat of War”
I = 0

Country A does not
prevent an invasion

Invasion Equilibrium:
“War”
I = 1

Figure 2: The two possible types of sub-game perfect Nash equilibria.

3.2.1 Non-Invasion Equilibrium: Peace with Threat of War

To solve for the non-invasion equilibrium, assume that Country A is always
better off when an invasion does not occur.

Result 1. In the non-invasion equilibrium, Country A chooses a resource
extraction from the function XA(mB;E,CB) which prevents an invasion.
Country B chooses an optimal armament m?

B that maximizes its utility based
on Country A’s resource extraction function.

1Assumptions 1-3 and the conditions of CA > 0 and CB > 0 are sufficient to limit this
game to only two possible types of equilibria.
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I solve the game using backwards induction. Beginning in the third
stage of the game, Country A wants to prevent an invasion. Therefore in
the second stage Country A makes a resource extraction decision, XA, such
that the payoffs for Country B invading is not higher than the payoffs of
not invading. The highest possible XA that Country A can choose is where
Country B becomes indifferent to invading:

uB(E −XA × w(mB))− l(mB)− CB = uB(E −XA)− l(mB)

uB(E −XA × w(mB))− CB = uB(E −XA) (1)

When Country A chooses an XA such that equation (1) holds, the payoffs
for Country B invading, the left hand side, are equal to the payoffs of not
invading, the right hand side. From equation (1), Country A can derive a
resource extraction best response function:

XA(mB;E,CB) (2)

Where XA ∈ (0, E) given Assumptions 1-3 and the conditions placed on the
parameters of E and CB.

This best response function (2) allows Country A to make an optimal
resource extraction decision given any set of real, positive inputs including
Country B’s armament mB. This resource exaction best response function
maximizes Country A’s utility by taking as much of the water resources as
possible without provoking an invasion.

In the first stage of the game, knowing that Country A will make an
optimal resource extraction decision XA as a response to mB from that
satisfies equation (1), Country B will maximize its utility by purchasing an
optimal amount of armament m?

B given that it will not invade. Country B’s
utility maximization problem then becomes:

max
mB

uB(E −XA(mB;E,CB))− l(mB) (3)

F.O.C : − ∂uB
∂mB

(E −XA(mB;E,CB))

×∂XA

∂mB
(mB;E,CB)− ∂l

∂mB
(mB) = 0 (4)

Assumptions 1 and 2 are sufficient to ensure that Country B’s payoff function
in equation (3) will be concave. Therefore with specific functional form, the
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F.O.C in (4) is necessary and sufficient to solve for a m?
B that maximizes

Country B’s utility.2

On the non-invasion equilibrium path, in the first stage of the game
Country B purchases an optimal armament of m?

B that solves equation (4).
In the second stage of the game, County A uses its best response function (2)
to choose an optimal extraction amount: X?

A = XA(m?
B;E,CB). Finally,

in the third stage of the game, Country B chooses not to invade with I? =
0. The full strategies and payoffs for the non-invasion equilibrium, labeled
“Peace with Threat of War”, is given in Table 1. A numerical example is
given in Appendix B.1.

Table 1: Potential Types of Equilibria

Equilibrium: Country A
Strategy: XA

Country B
Strategy:
mB, I

Country
A Payoff

Country B
Payoff

I: Peace
with Threat

of War

X?
A from (2)

where
0 < X?

A < E

m?
B that

solves (4),
I? = 0

uA(X?
A) uB(E −X?

A)−
l(m?

B)

II: War E mI?
B that

solves (6),
I? = 1

uA(E ×
w(m?I

B ))−
CA

uB(E − E ×
w(m?I

B ))−
l(m?I

B )− CB

3.2.2 Invasion Equilibrium: War

To solve for the invasion equilibrium, assume that Country A is not con-
cerned with preventing an invasion.

Result 2. In the invasion equilibrium, Country A extracts the full resource
endowment XA = E and Country B chooses an optimal armament mI?

B that
maximizes its utility knowing it will invade with certainty.

Again, I solve the game using backwards induction. In the third stage
of the game, Country A does not want to prevent an invasion. Therefore

2XA(mB) is negative in mB , which means the first term of the objective function (3)
is increasing in mB and because −l(mB) is decreasing in mB , the objective function (3)
has a well defined global maximum within the set of positive real values of mB .
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in the second stage Country A makes a resource extraction decision XA

will maximize its utility given the invasion occurring. Country A choose to
extract the full resource endowment XA = E as extracting anything less will
not prevent an invasion and will only give Country A a smaller payoff.

In the first stage of the game, knowing that Country A will take the full
resource endowment, Country B will maximize its utility by purchasing an
optimal amount of armaments mI?

B given that it will invade:

max
mI

B

uB(E − E × w(mI
B))− l(mI

B)− CB (5)

F.O.C : −E × ∂uB

∂mI
B

(E − E × w(mI
B))× ∂w

∂mI
B

(mI
B)− ∂l

∂mI
B

(mI
B) = 0 (6)

Again, Assumptions 1 and 2 are sufficient to ensure that the payoff function
in equation (5) will be concave. Therefore with specific functional form, the
F.O.C in (6) is necessary and sufficient to solve for a mI?

B that maximizes
Country B’s utility given an invasion.

On the invasion equilibrium path, in the first stage of the game Country
B purchases an optimal armament of mI?

B that solves equation (6). In the
second stage, Country A extracts E regardless of how many armaments
Country B purchased. Finally, in the third stage of the game, Country
B chooses to invade, I? = 1. The full resulting strategies and payoffs for
invasion equilibrium, labeled as “War” is included in Table 1. A numerical
example is given in appendix B.2.

3.2.3 Sub-game Perfect Nash Equilibrium: Peace or War

Before the game is plays out, Country A compares it’s potential payoff within
the non-invasion equilibrium where it prevents an invasion and its potential
payoff within the invasion equilibrium where it does not prevent an invasion.

Result 3. In the sub-game perfect Nash equilibrium, Country A chooses the
type of equilibrium, either non-invasion or invasion, that is utility maximiz-
ing as a sub-game. The game will end in that equilibrium.

If Country A has a higher payoff in the non-invasion equilibrium:

uA(X?
A) ≥ uA(E × w(mI?

B ))− CA (7)

Country A will play X?
A as its equilibrium strategy and the non-invasion

equilibrium path will occur. If inequality (7) does not hold and Country A
has higher payoff in the invasion equilibrium, County A will play E as its
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equilibrium strategy and the invasion equilibrium path will occur. Country
B, despite being the first mover in the game with its armament purchases,
has no control over what type of equilibrium will occur.3 This is because if
Country B believes that Country A will maximize its utility by extracting
X?

A and preventing an invasion, Country B is better off playing m?
B then

any other armament. Similarly, if Country B believes that Country A will
maximize its utility by extracting E and forcing an invasion, Country B is
better off playingmI?

B than any other armament. Any deviation in armament
purchases by Country B off the anticipated equilibrium path will not change
the equilibrium and will only decrease Country B’s utility. Therefore the
sub-game perfect Nash equilibrium includes a sub-game of which anticipated
equilibrium type has a higher payoff for Country A. A numerical example is
given in appendix B.3.

3.3 Equilibrium Discussion

In this game with perfect information, Country A can always prevent an
invasion if it wants to. Result 3 shows that Country A will only allow an
invasion to occur if it’s payoff is higher by allowing an invasion then by
reducing its resource extraction to prevent it. Therefore in this game, while
an invasion is technically a move by Country B, Country A has full control
over the invasion sub-game with its resource extraction strategy.

From result 1 in the Peace with Threat of War non-invasion equilib-
rium, the threat of invasion from Country B is what forces Country A to
take less than the full resource endowment, allowing more resources to flow
downstream to Country B. The problem for Country B, however, is that
the threat of invasion is only possible through the purchase of armaments.
If Country B does not spend enough on armament, its ability to invade
is reduced and Country A can extract more resources. The result is that
Country B must choose m?

B ≥ 0 as its armament and must pay l(m?
B) ≥ 0.

The armament purchases are costly, but remain a necessity for Country B
to obtain any of the river resources. Within the non-invasion equilibrium,
the marginal utility of armament for County B, which is interpreted as the
gains in allocation of the river resource from additional armament minus the
additional cost of that armament, is positive from mB = 0 until mB = m?

B,
after which it is negative.

Therefore Country B ends up in a poor position where it must “pay-
to-play” with its armament purchases to get any non–zero allocation of the

3The one exception is the knife’s edge case where equation (7) holds with equality.
This will case be discussed in the comparative statics section.
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transnational river resource. This is because the natural allocation of the
resource with no armament purchases, due to the sequential nature of the
game, gives the full endowment to Country A. Even if there are limits on
how much of the resource Country A can take, Country A still has an ex-
traction advantage over Country B by being the first to extract the resource.
Yet Country B’s ability to purchase armaments and threaten invasion nega-
tively affects Country A’s resource extraction, should it want to prevent an
invasion. The threat of invasion could be so severe and costly that Country
A extracts very little of the resource in order to prevent it. Therefore there
are two sources of power in this game which can secure a higher allocation
of resource: being the first-mover as the upstream country and presenting
a credible threat of costly invasion as the downstream country. The result
from these power dynamics in the game is that the resource gets allocated
between the two countries in accordance with each country’s respective level
of power: measured as fixed geographic advantage as the upstream country
and the effectiveness of armament purchases as the downstream country.
Yet problem with threat of invasion as mechanism for resource allocation
for the downstream country is that it is costly to construct with armament
purchases.

The Peace with Threat of War non-invasion equilibrium best represents
the current status quo in the Indus Basin conflict between Pakistan and
India. The two counties have remained in an uneasy peace since the end of
the Kargil War in 1999, yet Kashmir remains the most militarized area in
the world with over a million troops from both countries stationed in the
valley (Singh, 2016). With its growing population and increasing demand for
water resources, India has begun building many large scale dams and hydro
projects in the Kashmir that have the capacity to divert large amounts of
water from flowing downstream to Pakistan (Khadka, 2016). Pakistan has
responded with increasing military funding over the last several years and
stationing more troops in the Kashmir (Kugelman, 2016). Pakistan has gone
as far as promising that if India significantly diverts water in the Indus Basin,
it would be an act of war (Kugelman, 2016). The implication of my analysis
is that India is currently attempting to extract as much water in the Indus
Basin as it can without provoking a war with Pakistan. Pakistan, on the
other side, is using it’s nuclear armaments in addition to its conventional
forces to try and construct a military threat that will limit India’s water
extraction.
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4 Comparative Statics

In this section I will show how the outcomes of the game change as the
game parameters change. There are only three parameter values in the two
country game: the total resource endowment, E, the fixed cost of invasion
for Country B, CB, and the fixed cost of invasion for Country A, CA.4 In
the following subsections I will show how changes in the parameters affect
the whether the game ends in non-invasion or invasion equilibrium and how
changes to each parameter affects the strategies and outcomes within each
type of equilibrium. Additionally in the discussion, I will provide an intuition
of how the results of the comparative statics can be interpreted in the context
of the Indus Basin conflict.

4.1 Change in Type of Equilibrium

For any given set of game parameters E,CB and CA, Country A is either
better off in the non-invasion equilibrium or the invasion equilibrium. A
knife-edge case occurs when the parameters are such that Country A is
indifferent between the two equilibria:

Result 4. For any given functional form, there exists a set of game param-
eters that will make Country A indifferent to the non-invasion equilibrium
and the invasion equilibrium.

uA(XA(m?
B;E,CB)) = uA(E × w(mI?

B ))− CA (8)

In equation (8), the payoff for Country A on the non-invasion equilibrium
path are equal to the payoff for Country A on the invasion equilibrium path.

To show this, hold E constant at any non-zero or non-infinite value.
Certain combinations of CA and CB will satisfy equation (8). Rewriting
equation (8) with CA on the left hand side:

CI
A = uA(E × w(m?

B))− uA(XA(mI?
B ;E,CB)) (9)

By continuity, the value of CA that makes Country A indifferent to either
equilibrium is CI

A and is a function of the other game parameters and Coun-
try B’s armament strategy.

4Note that the functional forms of ui(·), w(·), and l(·) also affect the two types of equi-
librium and countries’ strategy within each equilibrium. I do not consider these changes
here.
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Assuming E is fixed, CI
A can be expressed solely as a function of CB.5

The function CI
A(CB) can then be mapped in figure 3 as the knife edge

between the two types of equilibria.

CB

CA

(0, 0)

CI
A(CB)

II

I

Figure 3: Knife-edge case between the two types of equilibria in the
parameter space. I: Non-invasion, II: Invasion

The set of parameters that will make Country A indifferent to either equi-
librium are the values of CI

A that solve (9) for any given CB. Inversely, the
same set of parameters are the values of CI

B that solve (9) for any given CA.
This is represented by the line shown in figure 3.

On the knife’s edge, even when Country A is indifferent between the
two types of equilibria, the invasion equilibrium will occur with certainty.
This is because if Country B purchases m?

B in the first stage of the game,
Country A will better off by extracting E and forcing an invasion. Since
m?

B < mI?
B , Country B will have under-spent on its armament and will be

worse off. Therefore Country B purchases mI?
B in the first stage of the game

and the game proceeds on the invasion equilibrium path.
When E is not held constant, depending on functional forms, it can

shift the knife’s edge case in terms of the two-dimensional parameters space

5Country B’s optimal non-invasion armament m?
B is affected by changes in CB as

the parameter is in equation (4). With implicit differentiation, m?
B can be expressed as

function of CB : m?
B(CB)
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shown in figure 3.6 Changes to E will have an ambiguous effect on the
knife’s edge. Consider equation (9):

CI=1
A = uA(E × w(m?

B))− uA(X?
A(mI?

B ;E,CB))

A increase in E is positive in the first term on the right hand side and
negative in the second term, the direction and magnitude of the overall
effect on CI

A will depend on functional forms. Therefore a increase in E
is ambiguous in CI

A(CB) as the knife’s edge between the invasion and non-
invasion equilibrium.

4.2 Changes within Equilibrium

4.2.1 Invasion Equilibrium: War

When the changes to the game parameters are such that they do not affect
the type of equilibrium that occurs, they can affect strategies and payoffs
within the invasion equilibrium.

Result 5. An increase to CA such that CA < CI
A will decrease Country

A’s payoff, but will not affect its equilibrium strategy of extracting the full
resource endowment. An increase in E will increase Country A’s payoff but
will not affect its strategy.

Consider Country A’s payoff function within the invasion equilibrium:

uA(E × w(mI?
B ))− CA

An increase in CA linearly decreases Country A’s payoff, but does not affect
its strategy of playing XA = E. An increase in E is positive in Country A’s
payoff and will be discussed below, but does not affect its strategy. This
is because within the invasion equilibrium, changes in the parameters will
not make Country A concerned with preventing an invasion, and therefore
it will continue to take the full resource endowment in the second stage of
the game.

Result 6. An increase in the resource endowment E increases Country B’s
optimal armament strategy as well as its payoff.

6When E = 0 or E = ∞ the game becomes arbitrary. Changing E to either zero or
infinity will change the equilibrium, but is an uninteresting case.
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Consider the first order condition from equation (6) with a new resource
endowment E′ where E′ > E:

−E′ × ∂uB

∂mI
B

(E′ − E′ × w(mI
B))× ∂w

∂mI
B

(mI
B)− ∂l

∂mI
B

(mI
B) = 0

Country B solves equation (6) with the new resource endowment E′, which
results in a new optimal invasion armament mI?′

B where mI?′
B ≥ mI?

B . There-
fore with the change in E to E′ Country B changes its equilibrium strategy
from mI?

B to mI?′
B . An increase in E is positive in Country B’s payoff. With

its new armament purchases, Country B it will receive the same or greater
fraction of the resource endowment that is now expanded. Due to the con-
vexity of the cost function, Country B’s gains in resource utility will be
greater in magnitude then the increased cost of armament. Country A may
lose a greater fraction of the total resource endowment in the invasion due
to Country B’s increased armament, but will still have a higher payoff as
the absolute increase in E will be greater in magnitude then the additional
fraction of resources lost by Country A in the invasion.

4.2.2 Non-Invasion Equilibrium: Peace with Threat of War

When the changes to the game parameters are such that they do not affect
the type of equilibrium that occurs, they can affect strategies and payoffs
within the non-invasion equilibrium. The game parameter CA is unimpor-
tant within the non-invasion equilibrium as long as CA > CI

A.

Result 7. An increase in CB will increase Country A’s optimal resource
extraction, which leads to an increase in Country B’s optimal armament.
Country A’s payoff will increase and Country B’s payoff will decrease.

Consider equation (1) from which Country A’s optimal extraction best re-
sponse function is derived:

uB(E −XA × w(mB))− CB = uB(E −XA)

As CB increases, the payoff for Country B invading in response to any given
extraction strategy XA decreases, given on the left hand side of equation
(1). This allows Country A to choose a higher XA and have (1) hold.
Therefore an increase from CB to C ′B changes Country A’s extraction best
response from XA(mB;E,CB) to XA(mB;E,C ′B) where XA(mB;E,C ′B) >
XA(mB;E,CB).
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Country B, in the first stage of the game, solves the first order condition
from equation (4) with Country A’s new best response function:

− ∂uB
∂mB

(E −XA(mB;E,C ′B))× ∂XA

∂mB
(mB;E,C ′B)− ∂l

∂mB
(mB) = 0

The solution to equation (4) will be a new optimal armament strategy m?′
B

that is greater than the old optimal strategy m?
B. With C ′B Country B will

play m?′
B as its optimal armament strategy. Country A will then use its

best response function to play its optimal extraction strategy considering
Country B’s new optimal armament: X?′

A = XA(m?′
B , E, C

′
B). The increased

armament is negative in XA, but the increased fixed cost of invasion for
Country B is positive in XA. Due to the convexity of the armament cost
function l(mB), the increase in armament will have a smaller effect on X?

A

then the increase in CB. This means that X?′
A > X?

A and Country A will
have a higher payoff. This also means Country B will have a lower payoff as
E −X?′

A will decrease while l(m?′
B)− l(m?

B) is positive.

Result 8. An increase in E will increase Country A’s optimal resource
extraction and will increase Country B’s optimal armament. The payoffs
for both Country A and Country B will increase.

From equation (1), an increase in E to E′ will change Country A’s best
response function to XA(mB;E′, CB) where XA(mB;E′, CB) is greater than
XA(mB;E′, CB). This is true even as E is both on the left hand side and
right hand side of equation (1), because w(mB) ∈ (0, 1) ensures that an
increase in E will increase the right hand side by a greater magnitude,
allowing XA to increase for equation (1) to hold. Simply put, if the resource
endowment expands, Country A will receive at least some of the additional
resources.

Country B, in the first stage of the game, solves the first order condition
from equation (4) with Country A’s new best response function as well as
the expanded resource endowment:

− ∂uB
∂mB

(E′ −XA(mB;E′, CB))× ∂XA

∂mB
(mB;E′, CB)− ∂l

∂mB
(mB) = 0

The solution to equation (4) will be a new optimal armament strategy m?′′
B

where m?′′
B ≥ m?

B. With E′, County B will play m?′′
B in the first stage of the

game. Country A will then use its best response function to play its new
optimal extraction strategy in the second stage: X?′′

A = XA(m?′′
B , E

′, CB).
Again, the increased armament is negative in XA, but the positive effect of
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E′ > E in XA will outweigh it in magnitude due to the convexity of l(mB).
Therefore X?′′

A > X?
A and Country A will have higher payoff.

This does not mean that Country B will have a lower payoff however, as
the expanded endowment no longer means gains by Country A are matched
by losses for Country B. Due to the convexity of the cost function l(mB)
along with the concavity of the utility function uB(·), Country B’s armament
increase from m?

B to m?′′
B will be such that:

uB(E′ −X?′′
A )− uB(E −X?

A) > l(m?′′
B )− l(m?

B)

The gains from the additional armament and expanded resource endowment
will outweigh the additional cost of armament. It will never be optimal for
Country B to spend more on additional armament then what it gains from
the additional resources flowing downstream. Therefore Country B will also
have a higher payoff.

4.3 Comparative Statics Discussion

From result 4, when the fixed cost of invasion is sufficiently low for both
countries, the combination of fixed costs for both countries will be below
the indifference curve and the game ends in the invasion equilibrium of
Invasion. Today in the Indus Basin, the fact that both Pakistan and India
have nuclear weapons raises the costs of war significantly. In 1947, however,
the newly created states of Pakistan and India had far lower costs of war
with smaller and purely conventional armies. Bose (2003) shows that when
it looked like India would annex the entire Kashmir region and control the
entire Indus Basin, Pakistan invaded the Kashmir in an effort to annex it
first. Pakistan, as a strategic move, decided it was better to invade and
bear the costs of that invasion rather than concede the water resources
of the Kashmir, which already at the time were critical to the Pakistani
agricultural industry. Ultimately, in part because of its lack of modern
armaments, Pakistan was only able to take about a third of the Kashmir in
its invasion.

As the cost of invasion rises for both countries, the combination of fixed
costs will move onto and beyond the indifference curve in the parameter
space and the game will end in the non-invasion equilibrium of Peace with
Threat of Invasion. Beginning after the Indo-Pakistani War of 1947, India
recognized that completely dominating the water resources in the Kashmir
would inevitably lead to more conflict with Pakistan (Kugelman, 2016). In
the Peace with Threat of Invasion equilibrium the upstream country reduces
its water extraction to prevent conflict. In 1960, Pakistan and India signed
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the Indus Waters Treaty which put a cap on India’s water extraction in the
Indus Basin. The Indus Waters Treaty and its extraction caps have become
the current focus of the status-quo of the Indus Basin conflict (Kugelman,
2016). Yet as indicated in my analysis of the Peace with Threat of Invasion
equilibrium, India honoring the treaty is based largely on Pakistan’s military
threat.7 The treaty, however, serves as useful focal point for India to indicate
that will not attempt to take as much of the water resources in the Indus
Basin as it can, which would provoke a war with Pakistan.

Result 7 states that as the fixed cost of invasion for Country B goes up,
it will spend more on armament but have a lower payoff. This models well
what currently happening to Pakistan. India’s military power, matching
its economy, is growing quickly in terms of defense spending and capability
(Wirsing, 2016). It is possible in the future that Pakistan will have great
difficultly invading India, regardless of what it spends on its own armaments.
While Pakistan’s nuclear arsenal may be able to impose catastrophic costs
on India in the event of war, Pakistan’s own cost of invasion would also be so
high that the benefit from the water resources it could secure in an invasion
would be reduced dramatically. That means India can largely ignore Pak-
istan’s nuclear bluff and extract a high level of water resources in the Indus
Basin. In recent years Pakistan has been forced to spend more and more on
its military in order to remain competitive with India and present a credible
threat of invasion (Wirsing, 2016). The higher the spending on armaments
by the downstream country, the more inefficient the armament becomes as
mechanism to allocate the water resource compared to a Pareto-improving
outcome where the resource is allocated without armament spending.

Result 8 states that as the resource endowment increases, the down-
stream country will spend more on armament but will also get a higher
payoff while the upstream country also gets a higher payoff. According
to Briscoe et al. (2006), updating the outdated water infrastructure in the
Kashmir could expand the available water resources dramatically and ben-
efit both India as the upstream country and Pakistan as the downstream
country. The issue, however, is that in the model the downstream country
will spend more on armament to ensure the expanded water resources are
not extracted by the upstream country. This is precisely how Pakistan has
reacted to major Indian dam projects and infrastructure in the Kashmir.
The Indian built dams can increase the total water supply in the Indus
Basin, but also give India the capacity to withhold more water from Pak-
istan (Khadka, 2016). Therefore Pakistan feels it is necessary to threaten

7India and Pakistan have gone to war three more times since signing the treaty.
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India with its military to make sure the dams are not used to withhold water
resources. If the water resource endowment can be expanded and then al-
located without armament spending, however, both countries could benefit
greatly.

5 Pareto Improving Outcomes

The status-quo of the Indus Basin conflict between Pakistan and India is
a non-cooperative equilibrium where Pakistan as the downstream country
is forced to spend heavily on its military as mechanism for securing water
resources. If Pakistan does not spend heavily on its military, it gives In-
dia the chance to take more water resources and leave Pakistan with less.
This non-cooperative equilibrium is Pareto inefficient and in the real-world
continuously risks war between the two countries. Solving the Indus Basin
conflict with a Pareto-improving cooperative solution requires a new mecha-
nism that changes how the water resources are allocated. In this section I will
discuss the existence of Pareto-improving outcomes under the non-invasion
Peace with Threat of Invasion equilibrium and two possible mechanisms that
can be used to achieve those outcomes.

The non-invasion equilibrium is not Pareto-optimal due to the cost of
Country B’s armament purchases. A simple way to illustrate this is to
begin by considering the non-invasion equilibrium strategies and payoffs.
Holding Country A’s resource extraction constant at X?

A, Country B forgos
its armament purchases of m?

B and instead uses a fraction of the money it
would have spent on armament, α×l(m?

B), as a transfer payment to Country
A and refunds the rest back to itself (1−α)× l(m?

B). This transfer payment
and refund will make both countries better off.

The problem with this simple transfer payment, however, is that Country
A has no incentive to hold constant its resource extraction once given the
transfer. If Country B gets rid of all of its armament purchases in favor of
a transfer payment and refund in the first stage of the game, Country A
can easily increase its resource extraction from XA = X?

A to XA = E in
the second stage without fear of invasion, making Country B even worse off
than before. Therefore Country B will never agree to this transfer payment,
even if it has the potential to create a Pareto-improving outcome.

The key to arriving at a Pareto-improving outcome is that Country B
must credibly believe that when it disarms, Country A will not take advan-
tage by increasing its water resource extraction. The way that the game
is currently constructed, this is not possible. Changing the game with a
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new mechanism, however, can create the opportunity for Pareto-improving
outcomes with the simple transfer payment. Two of these potential changes
are infinite repetition and delayed or withheld transfer payment; both will
be discussed below.

5.1 Infinite Repetition

Consider a change the in the game from single-period T = 1, to infinite
periods T = ∞. Also assume that inequality (7) holds and Country A is
better off in the non-invasion equilibrium. A Pareto-improving equilibrium
with a transfer payment is feasible when the discount factor δ ∈ (0, 1) is
sufficiently high. This follows from the Nash reversion Folk Theorem in
infinite repetition as proved by Friedman (1971). In each time period t,
Country A has two options: it can accept the transfer payment from Country
B and “defect” from the transfer agreement by then taking the full resource
endowment, or it can accept the transfer payment and hold to the agreement
by maintaining its non-invasion equilibrium resource extraction amount X?

A.
If Country A “defects” in any time period, both countries will move back
to the original non-cooperative non-invasion equilibrium for duration of the
infinite game. A Pareto-improving outcome is possible when the following
inequality holds true for a potential defection in the first period:8

∞∑
t=1

δt[uA(X?
A) + α× l(m?

B)] ≥ [uA(E) + α× l(m?
B)] +

∞∑
t=2

δt[uA(X?
A)]

[uA(X?
A) + (α× l(m?

B))]

1− δ
≥ [uA(E) + (α× l(m?

B))] +
[uA(X?

A)]

1− δ
δ (10)

The payoffs for Country A when holding to the agreement for all time periods
is given on the left hand side of inequality (10) and outweigh the payoffs for
“defecting” in the first period given on the right hand side of inequality (10).
Solving for δ as a function of the parameter α:

δ(α) ≥
−[uA(X?

A) + (α× l(m?
B))] + [uA(E) + (α× l(m?

B))]

[uA(E) + (α× l(m?
B))]− [uA(X?

A)]
(11)

As long as δ is large enough that equation (11) holds true, a Pareto-
improving outcome is possible with infinite repetition: Country A will never
“defect” and will agree to receive the transfer payment while holding its

8If equation (10) holds true for a defection in the first period, it will hold true for a
defection in any other period as well.
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own extraction constant. Equation (11) holds with equality when δ =
¯
δ(α),

which is the minimum discount factor necessary for the Pareto-improving
outcome as a function of α. If δ >

¯
δ, Country B will choose

¯
α(δ), which

is the lowest possible transfer payment it can make while still having (11)
hold with equality. Therefore in the Pareto-improving outcome from infinite
repetition, (11) will hold with equality as both Country A and Country B
maximize their payoffs.

The issue with infinite repetition as mechanism for arriving at a Pareto-
improving outcome, however, is that it makes two key unrealistic assump-
tions that make it not very useful as a real-world solution to the Indus Basin
conflict. First, the discount factor of utility for India is most likely very low;
near term payoffs for the extraction of water resource are much more valu-
able than long term payoffs, especially now as fresh water is currently in high
demand in India (Khadka, 2016). If the discount factor is below the thresh-
old value of

¯
δ, inequality (11) will not hold, as punishment by Pakistan will

be ineffective. Second, neither Pakistan nor India make strategic decisions
on an infinite time horizon. The Indian federal government, for example,
has a election cycle of five years and is unlikely to conduct strategic planning
far beyond that. Pakistan’s political cycle is even more unpredictable with
frequent changes of power from non-democratic mechanisms. Therefore, the
time horizon of any agreement is likely to limited. With a small time horizon
or a low discount factor, this version of the Folk Theorem no longer applies
and Country A and Country B fall back into a non-cooperative inefficient
equilibrium.

5.2 Delayed or Withheld Transfer Payment with Third Party
Arbitration

The best option for a new mechanism to create a Pareto-improving outcome
without relying on unrealistic assumptions is to reserve the payout of the
transfer payment to Country A until after the conclusion of the game, and
withhold the transfer payment completely if Country A defects. Country B
will make the transfer payment in the first stage of the game when it would
have purchased armaments, but instead of paying Country A directly, it
will give the transfer to a third-party institution. If Country A honors the
agreement with Country B and maintains its extraction amount at the non-
invasion equilibrium level, the third-party institution will give Country A the
transfer payment and Country A’s payoff will remain the same. If Country
A defects from the agreement by increasing its extraction after Country B
does not purchase armaments, then the third-party institution withholds
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the transfer payment and refunds it completely back to Country B.
Even with the delayed or withheld transfer payment mechanism, it is

not guaranteed that Country A will not defect. The transfer payment must
be sufficiently large such that it is better for Country A to not defect and
receive the payment. The following inequality must hold true:

uA(X?
A) + α× l(m?

B) ≥ uA(E) (12)

The payoffs for Country A when it does not defect are given on the left hand
side and when it does defect on the right hand side. If Country B wants a
cooperative outcome, α must be sufficiently large such that inequality (12)
holds. If inequality (12) holds, Country A prefers the transfer payment over
defecting on the agreement. Country B will attempt to minimize α as much
as possible while still having inequality (12) hold.

The presence of neutral institution that can act as an arbitrator be-
tween Country A and Country B allows for a Pareto-improving cooperative
outcome. This mechanism is a more realistic option for the Indus Basin con-
flict. To some degree, there has already been neutral arbitration in the Indus
Basin. Before the signing of the Indus Waters Treaty in 1960, the World
Bank served as a mediator of the negotiations between Pakistan and India
(Briscoe et al., 2006). More recently, the World Bank along with the Perma-
nent Court of Arbitration at the Hague have stepped in to resolve disputes
over dams in the Kashmir between Pakistan and India (Khadka, 2016). Yet
third-party arbitration has been limited overall in the Indus Basin conflict.
A new agreement between India and Pakistan that uses transfer payments
as a mechanism for cooperation would require a much deeper involvement of
a third-party to manage the transfer payments from Pakistan and monitor
India’s water extraction in the Indus Basin.

An optimistic scenario that uses third-party arbitration to create a Pareto-
improving outcome in the Indus Basin conflict is reforming and expanding
the Permanent Indus Commission (PIC). The PIC was created as a part
of the Indus Waters Treaty, but as a institutional body designed to set-
tle disputes between Pakistan and India has never functioned as anything
more than as platform for political grandstanding between both countries
(Briscoe et al., 2006). Yet the PIC could be reconstituted as a truly inde-
pendent body to receive transfer payments from both countries in the form
of water consumption fees in the Indus Basin. As Pakistan consumes more
water, it would pay much higher fees, constituting a net transfer payment to
the PIC. The PIC would then monitor water consumption by both countries
in the Indus Basin, and assuming India remains within the constraints of
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the Indus Waters Treaty, payout the fees in the form of water infrastructure
projects in the Indus Basin, with the aim of increasing the total water re-
source endowment. India would never receive a direct transfer payment, but
as a result of the expanded infrastructure, would have the opportunity to
extract more water resources in the future. Pakistan would also receive more
water resources from the improved infrastructure, and through its transfer
payments to the PIC that get passed on indirectly to India, safeguard the
extraction limits set by the Indus Waters Treaty. Both countries would get
more water resources, prevent a war over the Indus Basin, and limit the
purchase of expensive armaments.

6 Conclusion

This paper constructs a simple two player game of sequential transnational
resource extraction and potential invasion to analyze the Indus Basin con-
flict between Pakistan and India. In the game there are two possible types of
equilibria, both with different characteristics. The non-invasion “Peace with
Threat of War” equilibrium models the status-quo in Indus Basin conflict
between Pakistan and India most effectively, but the invasion equilibrium
“War” has an historical interpretation. In the non-invasion equilibrium the
armament purchases by the downstream country function as mechanism to
reallocate resources form the upstream country. This allocation mechanism
is costly however, and the result is a Pareto-inefficient non-cooperative equi-
librium. As the water resource endowment or the downstream county’s fixed
of invasion grows, the downstream will purchase additional armaments, fur-
ther increasing the inefficiency.

The model developed in this paper also shows that if the fixed cost of
invasion is low enough for both countries, the invasion equilibrium will occur.
Ultimately, it is the upstream country that will make the strategic decision
if an invasion occurs with its resource extraction, even as the downstream
country is the country with armaments and the ability to invade.

The paper offers potential solutions for Pareto-improving outcomes to
the non-cooperative equilibrium. A simple transfer payment under infinite
repetition is the best theoretical solution, but carries heavy assumptions
that do not necessarily hold in real-world conditions. Another solution is a
delayed transfer payment mechanism that is built into a neutral third-party
institution. The third-party institution can monitor the upstream country
to make sure it honors a cooperative agreement and utilize the transfer
payment in an effective manner such as investing in water infrastructure.
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The delayed transfer payment with the third-party institution is the most
realistic method of solving the Indus Basin conflict.

There are many ways to expand the model developed in this paper that
are good avenues for further research. The first is to expand the game from
single period to a multiple, but finite, period model. A dynamic game will
be able to model the across time strategic interactions of the upstream and
downstream country. It can also model the potential benefits of a sustained
infrastructure program by the PIC that expands the total resource endow-
ment over time and how it might benefit either country.

Another expansion of the model developed in this paper is to add more
countries to the game. Adding a third, fourth, and fifth country situated
along a transnational river will complicate the game, but may be useful in
modeling other transnational river conflicts such as the Nile conflict between
Egypt, Sudan, South Sudan, and Ethiopia or the Mekong River conflict
between China, Laos, Cambodia, Thailand, and Vietnam. A multi-country
model will allow for interesting strategic actions such as the downstream
countries creating a coalition against the upstream country.

I view this paper as a simple contribution in the analysis of transna-
tional resource conflicts as a subset of general resource conflicts. Transna-
tional resource conflicts are already of great importance in the international
sphere today and will likely become even more important as the expand-
ing economies of the developing world demand more resources such as fresh
water. Further theoretical and empirical study of these transnational re-
source conflicts is needed. Finding potential solutions to these conflicts is of
particular relevance and need for a more peaceful world in the future.
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A Existence of Sub-game Perfect Nash Equilib-
rium

For simplicity, I will prove existence with sufficient conditions for equilib-
rium. Assumptions 1-3 are sufficient for the existence of a sub-game perfect
Nash equilibrium in the model:

1. The utility functions are strictly increasing u′i(·) > 0, are concave
u′′i (·) < 0, and are continuously twice differentiable for both countries
i = A,B.

2. The cost function l(·) is strictly increasing l′(mB) > 0 and convex
l′′(mB) > 0

3. The w(·) function is decreasing w′(mB) < 0 for ∀mB > 0, is fully
differentiable for all positive values ofmB, and w(0) = 1 and limmB→∞
w(mB) = 0.

The game is sequential and all functions are common knowledge between
both players, therefore this game has perfect information. Harris (1985)
proves that sub-game perfect Nash equilibria exist for deterministic con-
tinuous games with perfect information when the following conditions are
met:

1. For all time periods and players, the pure strategy space is compact:
∀t ≥ 1 and 1 ≤ i ≤ N , Sti is compact.

2. For all time periods and players, the pure strategy space is Hausdorff:
∀t ≥ 1 and 1 ≤ i ≤ N , Sti is Hausdorff.

3. The histories of the game is a closed subset of the pure strategy space:
H is a closed subset of S.

4. For all time periods t ≥ 1, the set of feasible actions given the history
At is lower hemicontinious.

5. For all players, the payoff functions Pi are continuous.

Assumptions 1-3 are sufficient to satisfy the conditions set by Harris (1985)
for sub-game perfect existence. Each action within the sub-game of either
invasion or non-invasion, mB and XA, are distinct, continuous, and well
defined in a sequential order. While the set of possibilities for the action
mB is not compact as it includes infinity, the convexity of l(mB) along with
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the concavity of the utility function limits the feasible strategies in the pure
strategy space to values of mB less than infinity. The histories within each
sub-game are a closed set as each action has a well defined outcome. The set
of feasible actions given the history in the game correspond to well defined
outcomes that are nonempty, satisfying hemi-continuity. Finally, the payoff
functions ui(·) are continuous.

Country B’s invasion decision I in the last stage of the game is not a
continuous strategy. Yet, as shown above, each continuous sub-game where
an invasion either occurs or does not occur exists as proven by Harris (1985).
Therefore a sub-game perfect Nash equilibrium exists for the overall game.
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B Numerical Examples

This appendix includes numerical examples of each equilibrium. The specific
functional forms used in all of all of these numerical examples are:

ui(·) = Log(Xi) i = A,B w(mB) = .94mB l(mB) = (1/1000) ∗ (mB)2

Changes to parameter values will determine when each type of equilibrium
occurs.

B.1 Non-Invasion Equilibrium

A numerical example of the non-invasion equilibrium Peace with Threat of
War is when the parameters are as follows:

CA = 1, CB = 1, E = 10

I assume that inequality (7) holds and Country A wants to prevent an in-
vasion. I will check that inequality (7) holds with these parameter values
in section B.3. From result 1, Country A will choose its extraction XA in
the second stage of the game such that the functional form of equation (1)
holds:

Log[E −XA × w(mB)]− CB = Log[E −XA]

XA(mB;E,CB) =
E(−1 + eCB )

eCB − .94mB

This becomes Country A’s best response function given inputs. When the
parameter values of E and CB are inserted the function is only dependent
on mB:

XA(mB) =
10(−1 + e)

e− .94mB

Shown below is the graph of Country A’s extraction best response as a
function of Country B’s armament:
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Graph 1: County A’s best response extraction as a function of Country B’s
armament.

Knowing Country A’s best response function and that Country A will
prevent an invasion, Country B optimizes its armament purchases in equa-
tion (3) in the first stage of the game with m?

B that solves equation (4):

max
mB

Log[10− 10(−1 + e)

e− .94mB
]− (1/1000) ∗m2

B

F.O.C :
1.06× .94mB

(−.94mB + e)2(10− 10(−1+e)
−.94mB+e)

− mB

500
= 0

The solution to this first order condition is m?
B = 14.98. This level of arma-

ment maximizes Country B’s payoff, shown graphically below.
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Graph 2: Country B’s payoff as a function of its armament given that it
will not invade.

Plugging this armament into XA(mB) Country A’s optimal exaction
becomes X?

A = 7.40. When Country A extracts this much of the water
resource, Country B is indifferent to invading and not invading, so Country
A can prevent an invasion by extractingX?

A−ε, which in this case approaches
7.40. The payoff for Country in the non-invasion equilibrium A is:

Log[X?
A]

Log[7.40]

2.01

The payoff for Country B in the non-invasion equilibrium is:

Log[E −X?
A]− (1/1000) ∗ (m?

B)2

Log[10− 7.40]− (1/1000) ∗ 14.982

0.73
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B.2 Non-Invasion Equilibrium: War

A numerical example of the non-invasion equilibrium is when the parameters
are as follows:

CA = 0.1, CB = 0.1, E = 10

I assume that inequality (7) does not hold and Country A is unconcerned
with preventing an invasion. I will check inequality (7) does not hold in
section B.3. From result 2, in the second stage of the game, Country A
will choose XA = E regardless of what Country B does, forcing Country B
to invade. In the fist stage of the game, Country B will choose an optimal
invasion armament mI?

B . Solving the maximization problem from equation
(5) with mI?

B that solves the first order condition (6):

max
mI

B

Log[E − E × .94m
I
B ]− (1/1000)(mI

B)2 − CB

F.O.C :
0.62× 0.94m

I
B

10− 10× 0.94m
I
B

−
mI

B

500
= 0

The solution to this first order condition is mI?
B = 16.85. This level of ar-

mament maximizes Country B’s payoff, shown graphically below.
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Graph 4: Country B’s payoff function as a function of its armament given
that it will invade.
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With XA = E, the payoff for Country A in the invasion equilibrium is:

Log[E × .94m
I?
B ]− CA

Log[10× .9416.85]− 0.1

1.16

The payoff for Country B in the invasion equilibrium is:

Log[E − E × .94m
I?
B ]− (1/1000)(mI?

B )2 − CB

Log[E − E × .9416.85]− (1/1000)(16.85)2 − 0.1

1.48

B.3 Checking for Sub-game Perfect Nash Equilibrium

To check that the non-invasion equilibrium is the sub-game perfect Nash
equilibrium in section B.1, the functional form of inequality (7) must hold
given the parameters from section B.1. Note that mI?

B is the optimal invasion
armament for Country B that solves (6) given the B.1. parameters.

Log[X?
A] ≥ Log[E × .94m

I?
B ]− CA

Log[7.40] > Log[10× .9416.85]− 1

2.01 > 0.38

Country A prefers the non-invasion equilibrium over the invasion equilib-
rium. This is shown below graphically with Country A’s payoff being higher
when it prevents an invasion compared to when it does not prevent an in-
vasion:
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Graph 3: Country A’s payoff when preventing an invasion and letting an
invasion occur.

Country A receives a higher payoff at m?
B = 14.98 by adjusting its re-

source extraction to prevent an invasion. Thus Country A chooses to extract
X?

A = 7.40 and with the given parameters in B.1 the sub-game perfect Nash
equilibrium is the non-invasion equilibrium.

To check that the invasion equilibrium is the sub-game perfect Nash
equilibrium in section B.2, the functional form of inequality (7) must not
hold given the parameters from section B.2. Note that m?

B is the optimal
armament for Country B that solves (4) given the B.2 parameters. X?

A is
the optimal extraction for Country A that solves (1) given m?

B and the B.2
parameters:

Log[X?
A] < Log[E × .94m

I?
B ]− CA

Log[1.48] < Log[10× .9416.85]− 0.1

0.70 < 1.16

Country A prefers the invasion equilibrium over the non-invasion equilib-
rium. This is shown below graphically with Country A’s payoff:
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Graph 5: Country A’s payoff if its prevents an invasion and if it allows an
invasion.

At m?
B = 8.72, Country A receives a higher payoff by choosing to extract

E which forces Country B to invade. Therefore, knowing that Country A
will extract E, Country B will purchase mI?

B in the first stage of the game,
and the game proceeds on the invasion equilibrium path. Thus, with the
B.2 set of parameters, the sub-game perfect Nash equilibrium is the invasion
equilibrium.

37


	wp_cover_18-6
	Beckmann_WorkingPaper

