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Abstract
On a levelized-cost basis, solar and wind power generation are now competitive with fossil

fuels. But supply of these renewable resources is variable and intermittent, unlike traditional
power plants. As a result, the cost of using flat retail pricing instead of dynamic, marginal-cost
pricing—long advocated by economists—will grow. We evaluate the potential gains from dy-
namic pricing in high-renewable systems using a novel model of power supply and demand in
Hawai’i. The model breaks new ground in integrating investment in generation and storage ca-
pacity with chronological operation of the system, including an account of reserves, a demand
system with different interhour elasticities for different uses, and substitution between power
and other goods and services. The model is open source and fully adaptable to other settings.
Consistent with earlier studies, we find that dynamic pricing provides little social benefit in
fossil-fuel-dominated power systems, only 2.6 to 4.6 percent of baseline annual expenditure.
But dynamic pricing leads to a much greater social benefit of 8.5 to 23.4 percent in a 100
percent renewable power system with otherwise similar assumptions. High renewable systems,
including 100 percent renewable, are remarkably affordable. The welfare maximizing (uncon-
strained) generation portfolio under the utility’s projected 2045 technology and pessimistic
interhour demand flexibility uses 79 percent renewable energy, without even accounting for
pollution externalities. If overall demand for electricity is more elastic than our baseline (0.1),
renewable energy is even cheaper and variable pricing can improve welfare by as much as 47
percent of baseline expenditure.
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1 Introduction

How much will it cost to eliminate use of fossil fuels? There is reason for optimism. Tech-

nological progress has lowered the cost of wind and solar power to make them increasingly

competitive with coal and natural gas on a levelized basis. Battery storage costs are also

falling, which should grow electric vehicle use and could help electric grids absorb intermittent

renewable energy when it happens to be plentiful. Increasing integration of markets across

regions and countries could further facilitate adoption of wind and solar, as they allow more

flexible trading of power from times and locations with relatively high supply to those with

relatively little. Nevertheless, recent research indicates that intermittency combined with the

high cost of storage greatly increases the cost of renewable energy from a system perspective

(Gowrisankaran, Reynolds and Samano 2016).

A key challenge is that modern infrastructure has been built around electricity systems

with centralized and easily controllable generation. Electric grids operate through balancing

authorities that adjust electricity generation on timescales ranging from seconds to years, to

perfectly balance presumably inelastic, time-varying demand (Figure 1, panel A). Although

marginal generation costs vary over time in a conventional system, regulated retail prices tend

to be flat, giving rise to well-known inefficiencies. But since incremental costs only spike

during rare peak loads, the inefficiencies from flat rates are thought to be small, with most

concern centered on market power as demand approaches capacity constraints (Borenstein and

Holland 2005, Borenstein 2005, Blonz 2016). Utilities and generating companies have little in-

centive to change the current system, possibly because too few are aware of the possibilities

associated with variable prices, or because it may not benefit them under cost-of-service regula-

tory structures that currently predominate at the distribution level. Customers have also been

unenthusiastic about dynamic marginal-cost pricing, possibly because they lack confidence

that they would individually benefit from it. The smoothing of costs when setting retail rates

makes demand highly inflexible (inelastic) with respect to generation cost on a day-to-day,

hour-to-hour basis, and current system planning and operation reflect this inflexibility.

Balancing almost entirely on the supply side and foregoing potential demand response

creates some deadweight loss in existing power systems, but the loss will be much greater

in power systems with a large share of intermittent renewables. Solar and wind power are

the most cost-effective renewables, but the supply varies with sunlight and windspeed. When

intermittent renewables make up a small to moderate share of total generation, the existing

infrastructure can accommodate their variability in much the same way it has always managed

variable demand. Variations in renewable energy are counterbalanced with directed variation in

generation from fossil fuel plants. But as larger shares of renewable energy are accommodated

using this conventional model, system-level costs may rise significantly above the levelized costs

from any particular source. Controllable generation must be built or retained to compensate

for periods of low renewable power production, and these plants may burn either polluting

fossil fuels or high-cost biofuels. Providing spinning reserves from thermal power plants —
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ramping them up and down to compensate for short-term variations in demand or renewable

production — requires running these plants at inefficient fractional load levels. Moreover, as

more intermittent renewable power is added to the grid, eventually supply begins to exceed

demand and storage capacity at certain times, and renewable energy must be curtailed (i.e.,

discarded). This creates diminishing returns for renewable power and raises average costs.

In Hawai’i, Texas, Ireland and perhaps other places, a considerable amount of electricity is

already curtailed, even while utility customers may simultaneously pay 30 cents per kWh or

more for electricity. With retail prices far above the incremental cost of generation (zero

or negative during curtailment), there appears to be inefficiency in the current system, even

with renewable energy penetration far below the eventual goals in state renewable portfolio

standards. Resolving this inefficiency would help to slow climate change.

Figure 1: Conventional Utility and Utility of the Future

Notes: Intermittent renewables change the nature of the utility. The horizontal axis is power generated or consumed at a
point in time, and the vertical axis is incremental willingness to pay (Demand) or incremental cost of generation (Supply).
A stylized frequency distribution of load is shown at the bottom. Panel A shows a conventional utility with flexible supply
that can ramp generation up and down with varying demand without greatly changing the incremental cost of power,
except for rare peaking loads, so prices are typically low (Pl). Welfare gains have been gleaned from curbing peak loads
with critical-peak pricing and demand charges for commercial users, which tie each firm’s incremental price to its historical
peak. Panel B shows a hypothetical utility of the future, with generation coming mainly from inflexible, time-varying
intermittent renewables and real-time pricing. With highly volatile time-varying prices, storage and shiftable loads cause
demand to become more flexible, especially in the lower price range, but prices can spike very high during unusual periods
when supply is low and demand high.
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To economists, the obvious solution to intermittency is real-time retail pricing that reflects

the incremental cost and marginal willingness to pay for electricity. If electricity were priced at

its incremental value and cost there would be new, powerful incentives to efficiently store energy

on a distributed basis or otherwise shift consumption from times and places of relatively scarce

renewable supply to times and places of plenty. Chemical storage of electricity in batteries or

hydrogen remains expensive. However, critically, and potentially transformationally, electricity

consumers already have access to many low-cost systems that store energy in different forms.

By carefully timing water heating, electric vehicle charging and water pumping, using ice

storage for cooling systems, making micro-adjustments for some kinds of refrigeration, or

perhaps other means, electricity use can be shifted from seconds to many hours at low cost.

Such mechanisms would need to be automated by smart devices acting on customers’ behalf.

These existing technologies can make electricity demand highly substitutable over time, at least

over horizons up to a day or so. In addition to shifting the timing of electricity consumption

within the day, customers facing dynamic prices can also adjust the total amount of power they

consume each day, reducing total consumption during extended periods when power is scarce,

or increasing it when power is abundant. We conceptualize this substitutability and overall

elasticity with a more elastic demand in panel B of figure 1. While demand-side flexibilities

would make intermittent renewable energy more cost effective from a system perspective, they

will only be brought to market and adopted if pricing mechanisms incentivize them.

In this paper we develop a novel model of power supply and demand to examine the extent

to which variable pricing could plausibly increase the social benefits of renewable energy. The

model is novel in the way it integrates investment in generation and storage capacity with real-

time operation of the system, including an account of reserves, a demand system with different

interhour elasticities for different end uses, as well as substitution between electric power and

other goods and services. Both supply and demand sides of the model can also provide reserves.

The model, an extension of Switch (Fripp 2012, Johnston, Maluenda, Henŕıquez and Fripp

2017), is open source and adaptable to other settings. Earlier versions of the model (lacking

reserves and demand-side integration) have been implemented for California, the Western

United States, and other areas (Fripp 2012, Nelson, Johnston, Mileva, Fripp, Hoffman, Petros-

Good, Blanco and Kammen 2012, Mileva, Nelson, Johnston and Kammen 2013, Wei, Nelson,

Greenblatt, Mileva, Johnston, Ting, Yang, Jones, McMahon and Kammen 2013, Ponce de

Leon Barido, Johnston, Moncada, Callaway and Kammen 2015, Sanchez, Nelson, Johnston,

Mileva and Kammen 2015, He, Avrin, Nelson, Johnston, Mileva, Tian and Kammen 2016).

Our study considers the island of Oahu, the most populous island (about 1 million) and

county of Hawai’i, which comprises roughly two thirds of the state’s population and consumes

over three quarters of the state’s power. The island supports a large urban city (Honolulu),

plus a substantial tourist industry and several large military bases. Hawai’i is a particularly

interesting focus for several reasons. First, its scale is large enough to be emblematic of larger,

more complex systems, but small enough to be holistically modeled. Second, given Oahu’s
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isolation and lack of connectivity to other Hawaiian islands, intermittency is an especially

acute problem, since connectivity and trade with other regions is not economically feasible.

Third, Hawai’i has the nation’s, and perhaps the world’s, most ambitious renewable portfolio

standard – 100 percent renewable by 2045 – which makes our analysis especially relevant to

actual policy implementation. Fourth, Hawai’i depends on oil for its power production, making

wind and solar power cheaper than fossil fuels today, so it is first to face an economic crossover

that other regions will face in the future, as wind and solar move toward undercutting natural

gas and coal.

We use the model to: (1) estimate the cost, benefits and optimal generation mix of a

100 percent renewable energy system that accords with Hawai’i’s renewable portfolio stan-

dard (RPS) as compared to a conventional fossil-fuel power system (Fossil) and a least-cost

system with no constraints on the generation mix (Unconstrained); (2) evaluate the welfare

improvement of having dynamic marginal-cost pricing as compared to flat price for each kind

of system (RPS, Fossil, and Unconstrained); (3) evaluate how much those with high interhour

substitutability of demand gain from dynamic pricing as compared to those with very little

interhour substitutability.

Cost assumptions for a wide range of power generation and storage alternatives, from which

an optimal portfolio is selected by the model, are based on those in the most recent (December,

2016) Power Supply Improvement Plan (PSIP) of the local utility, Hawaiian Electric Company

(HECO).1 We consider scenarios for which costs equal current-day assumptions, as well as

scenarios that use the lower costs projected for renewable and battery technologies in 2045

in the PSIP. The analysis we perform here is a single-stage analysis in the sense that each

scenario assumes the optimized system is built at one point in time, although pre-existing

assets can be retained. We do this to make clear comparisons of highly-renewable and fossil

systems in flat and dynamic pricing contexts, and to show how much renewable power would

be selected in optimized systems with fixed versus dynamic marginal-cost pricing. In practice,

an optimal plan would make investments gradually over time; Switch does have the capacity

to formulate such a plan, even though we do not consider it in this paper. Such a model would

be considerably slower to solve.

Consistent with earlier studies, we find that dynamic pricing of power provides little social

benefit in fossil-fuel systems, only 2.6 to 4.6 % of baseline annual expenditure depending on

cost and interhour substitutability. But dynamic pricing leads to a much greater social benefit

of 8.5 to 23.4% in a 100% renewable system with otherwise similar assumptions. The other key

finding is that high penetration renewable systems, including 100% renewable, are remarkably

affordable. Indeed, the welfare maximizing (unconstrained) generation portfolio under the

utility’s projected 2045 costs and pessimistic interhour demand flexibility uses 79% renewable

energy and improves welfare by 34.6% of baseline expenditure. With dynamic pricing, even a

1See https://www.hawaiianelectric.com/about-us/our-vision.
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100% renewable system is welfare improving over a fossil system, excluding gains from reduced

pollution externalities. These results all derive from an assumed outer demand elasticity of

just 0.1, and cost assumptions for renewable energy and batteries that some may regard as

pessimistic. In other scenarios the benefits of real time pricing paired with renewable energy

can be far greater.

The rest of the paper is organized as follows: Section 2 characterizes the demand system

and how we calibrate it; Section 3 reviews the Switch model that optimizes investment and

operations, as well as a Dantzig-Wolf algorithm used to equilibrate supply and demand and

thereby optimize the joint system; Section 4 summarizes capital and input cost assumptions

and the wide range of scenarios we consider; Section 5 summarizes the results; and Section 6

concludes.

2 Demand

The main novelty of this paper is the integration of a fully-specified interhour demand system

with Switch, a state-of-the-art planning model that jointly optimizes investment and chrono-

logical, hourly operation of a power system. We therefore begin by describing the structure of

the demand system and how we calibrate it.

2.1 A Nested-CES Demand System

The demand system is comprised as the sum of three nested, constant elasticity of substi-

tution (CES) utility functions that represent different types of demand. The outer layer of

each utility function assumes just two goods, electricity and all other goods, with a constant

elasticity of substitution θ, which represents a demand elasticity. The nested layer considers

electricity demand in each hour within each 24-hour day, with an interhourly elasticity of sub-

stitution σ. Aggregate demand in any given day is comprised as the weighted sum of three

representative pseudo-customers with different σ values. Each pseudo-customer is assumed

to maximize utility U(x1, x2, . . . , xh, . . . , x24, Y |σ, θ, α, β1, β2, . . . , xh, . . . , β24) subject to their

budget constraint,
∑24

h=1 phxh + Y = M , where xh is electricity consumed in hour h, Y repre-

sents expenditure on all other goods with a constant price equal to 1 (i.e., money), α and βh

are share parameters that weight all other goods relative to electricity, and electricity in each

hour relative to other other hours, and M is total income. M is calibrated by dividing total

baseline electricity expenditure of a particular pseudo-customer in a day by the share of aggre-

gate income spent on electricity. The α and βh parameters are calibrated from the statewide

share of income spent on electricity expenditure, and by baseline load shares allocated to each

pseudo-customer.

Following Rutherford (2008), suppose there exists a unit expenditure function or an ideal

price index (the minimum expenditure required to achieve baseline utility) in the “calibrated

share form,” a measure relative to baseline values. The expenditure function is:
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e(ph, p(−h), p̄h, ¯p(−h), Ū) = Ū

α(pY
p̄Y

)1−θ
+ (1− α)

(
n∑
h=1

βh

(
ph
p̄h

)1−σ
) 1−θ

1−σ


1
1−θ

(1)

where Ū , p̄Y , p̄h indicate baseline values for respective parameters, α is the calibrated share

given the baseline value of Ȳ = M −
∑

h x̄hp̄h, α = Ȳ /M , and βh are calibrated shares of each

day’s electricity consumed by the pseudo-customer in each hour at the associated baseline

prices p̄h.

Consumer welfare is measured by the indirect money metric utility function. That is, we

can write indirect utility in terms of the income required at baseline prices to achieve the

utility level achievable at prices p and income M , as:

V (ph, p̄−h,M) =
M

e(ph, p(−h), p̄h, p̄−h, Ū)
(2)

From Roy’s Identity, Marshallian demand is given by:

xh(e(ph, p−h, p̄h, p̄−h),M) = −∂V/∂ph
∂V/∂M

=
M

e

∂e

∂ph

The closed form solution of demand functions then can be written as a function of cali-

brated share parameters derived from a baseline load profile and the share of income spent on

electricity at baseline prices.

xh(p|p̄, σ, β,M)

p̄
=

M

α+ (1− α)

 24∑
j=1

βj

(
pj
p̄j

)1−σ
 1−θ

1−σ

−1

×(1−α)

 24∑
j=1

βj

(
pj
p̄j

)1−σ
σ−θ

1−σ

×βh
(
p̄h
ph

)σ
(3)

In the computational model, we partition a baseline load profile, drawn from actual histori-

cal hourly demand, into three pseudo-customers, each with a different interhour substitutability

parameter, σ ∈ {σl = 0.1, σm = 1, σf = 10} and a different baseline demand profile, derived

from historic loads. Pseudo customers thus differ with regard to their budget and with regard

to their calibrated share parameters (βh), because their load profiles differ. The calibrated

share parameters also differ by day and season, to account for weather.

To formalize this demand system, denote the calibrated load shares on day d and pseudo-

customer i by βid and income by M id = Eid

s , where Eid is the baseline expenditure of pseudo-

customer i on day d, and s is the share of baseline state income spent on electricity. Thus,

define the demand for a pseudo-customer i on day d in hour h as xh(p|p̄, σi, βid,M id), using

the definition in equation 3. Aggregate demand on day d and hour h is given by the sum of

the demands from the three pseudo-customers:
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xdh(p|p̄) = xh(p|p̄, σl, βld,M ld) + xh(p|p̄, σm, βmd,Mmd) + xh(p|p̄, σf , βfd,Mfd) (4)

This demand system provides an intuitive and relatively simple way to embody a range of

heterogenous demand responses and inter-temporal substitutability of loads that vary over sea-

sons and weather-related circumstances. The degree of interhour substitutability may under-

or over-estimate actual technical possibilities. For example, it assumes the same degree of

substitutability between any two hours within the same day. At least for some kinds of de-

mand, substitutability may be greater for hours nearer in time. At the same time, the demand

system assumes zero substitutability between days, when in reality substitution between late

in one day and early in the next may be fairly elastic. While this later assumption may under-

estimate the overall degree of flexibility, the structure makes it easy to scale up a sample of

representative days throughout the year to parsimoniously represent a portfolio of days with

weather and demand that are chronologically matched with supply.

2.2 Shares of Flexible Demand

This section describes how we estimate baseline loads for each kind of pseudo-customer. We

used hourly aggregate demand data for Oahu from the Federal Energy Regulatory Commission

to calibrate hourly load shares that are coincident with solar and wind data used in modeling

the supply side. This allows the model to account for the covariances between renewable supply

and demand. However, because some kinds of demand are likely to be more time shiftable than

others, we develop alternative interhour flexibility scenarios based on estimated load shares

that are known to be shiftable using current technologies: air conditioning, water pumping

and water heating.

Air conditioning demand is shiftable using ice storage, wherein ice is generated when elec-

tricity prices are low, and used for cooling instead of running the compressor when electricity

prices are high. These systems can be retrofitted onto existing air-conditioning systems. A

number of companies already market this technology to reduce demand charges2, to respond

to real-time variation in prices, or provide contingency or regulating reserves to the balancing

authority.3 Such systems may only require different, smarter controllers and network connec-

tivity. A considerable amount of flexible power is also used to pump water from aquifers to

storage reservoirs and tanks on hillsides; water is then gravity fed to homes and businesses.

2Demand charges, which are common for commercial electricity customers, link monthly bills to the highest
kW draw, typically averaged over a 15-minute period, from each commercial customer during the month
or year. However, because peak demand by an individual customer is unlikely to coincide with the system
peak, demand charges may do little to improve efficiency relative to real-time pricing (Borenstein, Jaske
and Rosenfeld 2002).

3Regulating reserves balance the electricity system in real time as demand fluctuates from moment to moment
while contingency reserves keep the system stable in response to larger disruptions, such as a power plant
unexpectedly falling off line.
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Currently, most water pumping is done at night, because the water municipality receives a

slight discount under current time-of-use pricing. There should be a considerable amount of

flexibility in when pumping could occur, a flexibility that is mainly constrained by the capacity

of water storage. A number of companies have also developed smart water heaters, which can

heat proactively in relation to power availability (or prices) and typical use patterns instead

of reactively to hot water use. All of these systems embody an implicit form of storage that

may be much less expensive than batteries, compressed air, pumped-water hydroelectricity or

other means. These systems can also provide a source of reserves to help maintain system

stability in the face of unexpected load fluctuations.

By considering loads from only these three principle sources, we believe our estimates

of demand-response potential should be conservative, because other kinds of electricity de-

mand for which we could not obtain estimates, or for which current technologies do not exist,

may nevertheless prove shiftable if appropriate incentives and technologies were to be made

available. For example, refrigerator/freezers and swimming pool pumps likely have large, time-

shiftable loads, but we do not explicitly consider them in this study because we were unable

to obtain data on their real-time use.

Another consideration is that over 70 percent of total demand on Oahu derives from com-

mercial customers, many of whom have electricity metered at 15 minute intervals or less to

accommodate demand charges specified in commercial tariffs. The state is also developing

plans to install smart meters for other customers. Even without smart meters, we expect that

integrators could implement a wide range of demand-response services, including reserve pro-

vision, by using other forms of network connectivity to control power consumption of certain

designated devices. Alternatively, devices could be programmed to forecast and respond to

price signals automatically.

Estimates of shiftable load in each hour of each month are drawn from Navigant Consulting

(2015), a private consulting report commissioned by Hawaiian Electric, a copy of which was

submitted to the Public Utility Commission. Although much of the report is redacted, ob-

scuring the methods used to estimate load shares from alternative uses, it is the only available

load share data, specific to Oahu, that we have been able to obtain. The starting point for

our estimates is a graph in the report depicting September 2025 projected end-use loads by

hour of the day. We measured the bars in the graphs by hand to estimate load shares in each

hour for this month, and summed those for air conditioning, water heating and water pump-

ing to obtain an estimate for the mid-September share of potentially shiftable load. Because

loads vary over time, and tend to be higher when it is warmer, presumably due to greater use

of air conditioning, we adjusted load shares for other months to account for this seasonality.

We made this adjustment using hourly load estimates provided in the Navigant report for

February, May, August and November of 2014, but were not partitioned by end use. These

hourly loads were regressed against a polynomial of hour-of-day and average temperature in

each month.
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Load = β0 + β1h+ β2h
2 + β3h

3 + β4PV + β5T.

where h is hour per day, PV is distributed generation from photovoltaic solar (which may be

associated with temperature), and T is temperature. We attribute temperature-sensitive load

to air conditioning, and then using load shares given for September 2025 as a baseline, we

infer the air conditioning share for the other months, linearly interpolating between February,

May, August and Noveember. Load shares attributable to water pumping and water heating

is assumed to be same across all months of the year.

We consider three different scenarios (optimistic, moderate, pessimistic), each of which

assigns different shares of the potentially-flexible and other load to pseudo-customers with

different interhour substitutability. The assumptions for each scenario are reported in table 1.

In figures 2 and 3 we plot the implied shares of highly flexible, moderately flexible, and

inflexible demand in total and by hour and month for each of the three scenarios.

In the end, we cannot know in advance how much demand is truly flexible or the appropriate

elasticities to use, nor anticipate how much potentially flexible customers will choose to engage

with a well-designed variable-pricing program. We anticipate that commercial customers would

comprise the bulk of participating flexible demand. Because commercial customers comprise

over 70% of Oahu’s load and commercial loads have a large share of potentially-shiftable load,

the optimistic scenarios assume that a large majority, but not all, of commercial customers

with shiftable load would actively participate in a demand response program. That optimistic

scenario might be justified by the historically high participation of commercial customers in

real-time marginal-cost pricing programs like the one in Georgia. We anticipate that participa-

tion could be even greater in future Hawai’i, since price variation will presumably be far greater

and advanced computing technologies could make participation convenient and relatively low

cost.

Figure 2: Demand flexibility scenarios
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Table 1: Share of shiftable load

σ Optimistic Moderate Pessimistic

Share of potentially flexible load

(water pumping, water heading and air conditioning)

Highly Flexible 10 67% 33% 15%

Somewhat Flexible 1 5% 5% 5%

Highly Inflexible 0.1 28% 62% 80%

Other load

Highly Flexible 10 15% 8% 0%

Somewhat Flexible 1 5% 5% 5%

Highly Inflexible 0.1 80% 88% 95%

Notes: Shares of flexible and inflexible shares in each scenario.

2.3 Demand-Side Reserves

Up reserves normally refer to residual capacity by dispatchable generators that can ramp up

in the event that a power plant drops offline, wind or solar energy generation unexpectedly

falls, or demand suddenly spikes. Reserves can also be provided by the demand side, and this

is typically what power engineers call demand response, while economists normally connect the

term to the more general idea of price-sensitive demand. Historically, demand-side up reserves

have involved contracts between the balancing authority (e.g., utility or ISO) and large-scale

users of electricity that give the balancing authority the ability and right, in exchange for a

rate reduction, to remotely reduce or terminate power supply to participating customers during

certain critical events (note that “up” reserves are specified from a generation perspective, so

they correspond to reducing load). In Hawai’i, residential customers have also participated

in a program that gives residential customers a $3 monthly discount in exchange for allowing

the utility to suspend power supply to water heaters during critical events. Similarly, down

reserves correspond to the option of quickly ramping down a power plant or increasing energy

use in the event of a net supply surge, which might result from a sudden falloff of demand or

supply surge from intermittent renewables.

The model presented here includes demand-side participation in reserve markets for both

up and down reserves, with only highly-flexible demand types assumed to participate. Reserves

can also be supplied by the supply side, either from batteries or dispatchable generators. On

the demand side, we incorporate reserve provision into flexible-type demand by applying a net

cost that includes sale of up and down reserves and purchase of energy, all at real-time prices.

We define these as follows:
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Figure 3: Demand flexibility scenarios by hour and month

The graphs show three scenarios for interhour demand flexibility, optimistic, moderate, pessimistic,
respectively. Note that all demand types are assumed to have the same overall demand elasticity for
electricity (0.1 in the the baseline case). Flexible, midflex and inflexible loads are assumed to have
within-day interhour elasticities of substitution equal to 10, 1 and 0.1 respectively.
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xuh = x∗h (5)

xdh = max(xh)− x∗h (6)

where x∗h is energy use in hour h, xuh is demand-side up-reserves provision (option to decrease

demand) in hour h, xdh is demand-side down-reserves provision (option to increase demand) in

hour h, max(xh) is the maximum electricity demand when price equals an imposed minimum

($1 per MWh). The minimum price limits demand that could otherwise rise to infinite levels

given the constant-elasticity structure of the demand system. The flexible pseudo-customer

chooses x∗h (and implicitly xuh and xdh), resulting in a net cost given as follows:

Net Cost = p∗hx
∗
h + puhx

u
h + pdhx

d
h (7)

= p∗hx
∗
h + puhx

∗
h + pdh · (max(xh)− x∗h) (8)

= x∗h · (p∗h + puh − pdh) + pdh max(xh), (9)

i.e., the incremental cost per unit of consumption is p∗h + puh − pdh.

2.4 Calibration of Hourly Demand Shares

We calibrate demand scenarios by estimating the share of aggregate load in each hour and

each month used for three potentially shiftable loads: water heating, water pumping and air

conditioning. Typically these uses of power can be shifted many hours at relatively low cost

using existing technologies. We then suppose optimistic (67%), midline (33%) and pessimistic

(15%) scenarios, each of which assumes a different share of these potentially-shiftable loads will

actually have high interhour substitutability within a day (elasticity = 10). Across all scenarios

we assume just 5% of baseline demand has moderate substitutability between hours (elasticity

= 1). We assume that 80-95% of remaining load (not for water heating, water pumping or air

conditioning) is highly inelastic between hours (elasticity = 0.1). The optimistic scenario could

be achieved with widespread adoption of real-time pricing and automated demand-response

systems by commercial users alone.

We use a baseline model that assumes an overall demand for energy (capturing substitution

between electricity and all other goods) that is highly inelastic (elasticity = 0.1), which is

consistent with a recent estimate with a strong study design and relatively similar climate

and marginal price profile (Ito 2014). While some studies find larger demand elasticities, they

tend to be based on poorer study designs and we believe it is important to have a baseline

model that is reasonably conservative. Within our model, this outer elasticity captures demand

response over longer time horizons, which helps with seasonal imbalance and episodic weather,

and adjusts overall scale modestly depending on average prices. However, because it seems

possible that new technologies and energy demands might arise in a world with highly variable
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(and often free or nearly free) electricity, we also consider scenarios with larger demand overall

elasticities (0.5, 0.9 and 2.0).

2.5 Electric Vehicles

An important consideration for modeling future power systems with high-penetration renew-

ables is the potential growth of electric vehicles. Electric vehicles represent a new source of

power demand and, given their large and growing battery sizes, a new source of power stor-

age or interhour flexibility that might also provide reserves. Like demand-side flexibility, it is

highly uncertain how quickly electric vehicles may grow as a share of the vehicle fleet. Given

the unique nature of power demand from electric vehicles, plus the fact that they comprise

a small share of historical loads used to calibrate the demand functions described above, we

treat them separately. We also consider scenarios with a wide range of electric vehicle adop-

tion, 0.5% (the current share), 50% and 100%. In variable pricing environments we assume

that vehicle charging is optimally scheduled to least-cost times in each day, and thus makes

high-penetration renewable systems easier to achieve, but do not allow for any interday sub-

stitution of charging (which will likely be feasible). In fixed-price environments we assume

vehicle charging occurs as soon as vehicles arrive at home or work, based on trip inventories

from the National Household Travel Survey (Fripp 2017, Das 2015, FHA 2009). This shifts up

the evening peak more than other times, and makes high-penetration renewable systems more

costly.

3 Switch 2.0

Switch4 (Fripp 2012, Johnston et al. 2017) is open-source power planning software that uses

mixed-integer linear programming to minimize the net present value of the cost of electricity

production subject to operation and policy constraints. The main decision variables are gen-

eration capacities at each candidate project site and the amount of power to produce or store

at each project site during each hour of the planning period. Constraints require adequate

power to satisfy demand plus reserves during all hours, and satisfaction of any exogenous

policy constraints, such as a renewable portfolio standard (RPS).

Switch combines an operational model, similar in detail to production cost models such as

GE MAPS or Plexos, and a long-term capacity expansion model, similar to Ventyx Strategist or

PowerSimm Planner. Commercial capacity planning models typically consider the distribution

of loads exogenously imposed on a system, neglecting price response by customers. Moreover,

conventional planning or expansion models generally use unordered sets of time steps, and

thus do no have enough temporal detail to model the operation of power systems with a large

share of time-varying renewables. Such power sources may need to be curtailed or be balanced

by interhour load shifting or energy storage, which can only be modeled accurately with

4http://www.switch-model.org
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chronological time steps. In contrast to conventional capacity planning models, conventional

production cost models can optimize chronological management, but assume fixed generation

portfolios that must be selected by other means. Efficient integration of renewables can be

greatly enhanced by simultaneously considering both capacity and chronological operation

decisions, as does Switch (Fripp 2012, Johnston et al. 2017, Nweke, Leanez, Drayton and

Kolhe 2012, Sullivan, Eurek and Margolis 2014).

3.1 Mathematical Formulation of Switch

Here we provide a brief overview of the core equations used by Switch. A more complete

documentation of the software can be found in Johnston et al. (2017).

Switch 2.0 has a modular architecture that reflects the modularity of actual power systems.

Most power system operators follow rules that maintain an adequate supply of power, and

most individual devices are not concerned with the operation of other devices. Similarly, core

modules in Switch define spatially and temporally resolved balancing constraints for energy and

reserves, and an overall social cost. Separate modules represent components such as generators,

batteries or transmission links. These modules interact with the overall optimization model by

adding terms to the shared energy and reserve balances and the overall cost expression. They

can also define decision variables and constraints to govern operation of each technology. This

approach makes it possible for users to add, remove or alter modules, representing different

system components and formulations without unexpected interactions with other parts of the

model. Consequently, Switch 2.0 can be readily customized to address the needs of a given

study or region.

In the treatment below, we have omitted elements that define regional load zones and

power transfers between these zones, since our model of Oahu has only a single zone. However,

transmission constraints would be of critical importance for applications to larger geographical

areas that are connected, such as the continental United States. We have similarly omitted

definitions for multiple investment periods, since we use a single stage for this study.

3.1.1 Objective Function

The objective function minimizes the net present value of all investment and operation costs:

min
∑

cf∈Cfixed

cf +
∑
t∈T

wyear
t

∑
cv∈Cvar

cv
t (10)

Function (10) sums over sets of fixed costs Cfixed and variable costs Cvar. Each fixed cost

component cf ∈ Cfixed is a model object, specified in units of dollars per year. This object may

be a variable, parameter or expression (calculation based on other components). Variable cost

components cv are indexed by timepoint (t) among all study timepoints (T ) and specified in

units of dollars per hour. The term cv
t is the element with index t from component cv, i.e.,

a variable cost that occurs during timepoint t. The weight factor wyear
t scales costs from a
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sampled timepoint to an annualized value. For this study, we select one 24 hour day from each

month of the year, so that the time points t specify actual hours. The weights multiply the

individual days by about 30 such that the accounting reflects costs over an entire year.

Plug-in modules add components to the fixed and variable cost sets to represent each cost

that they introduce. For example, the generator-building module adds the total annual fixed

cost for all generators and batteries (capital repayment and fixed operation and maintenance)

to the Cfixed set, and the generator-dispatch module adds variable costs (fuel and variable

O&M) for these facilities to Cvar. The specification is generic so that models of different gran-

ularity may be considered depending on the needs of a particular problem and computational

expense.

3.1.2 Operational Constraints

Power Balance: Specifies that power injections and withdrawals must balance during each time

point. Injections are mainly output from power plants and battery storage, and withdrawals

are mainly customer loads and battery charging. As with the objective function, plug-in

modules add model objects to P inject and Pwithdraw to show the amount of power injected

or withdrawn by each system component during each timepoint. For this study, production

components were defined by the standard generation modules, and withdrawal components

were defined by the standard electric vehicle model and a purpose-built responsive demand

module.

∑
pi∈P inject

pi
t =

∑
pw∈Pwithdraw

pw
t , ∀t ∈ T (11)

Dispatch: Power generation from a source (e.g., a power plant) must fall below its committed

(turned on) capacity Wg,t during time point t multiplied by a capacity factor ηg,t, that may

vary with exogenous factors like solar radiation or wind speed.

Pg,t ≤ ηg,tWg, ∀g ∈ G,∀t ∈ T (12)

Additional constraints further limit operation:

Wg,t ≤ Kg, ∀g ∈ G,∀t ∈ T (13)

dmin
g Wg,t ≤ Pg,t, ∀g ∈ G, ∀t ∈ T (14)

Equation 13 constrains the commitment choice to fall below the installed capacity Kg (possibly

multiple identical units); equation 14 limits dispatch by a minimum-load constraint that applies

to many power plants.
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Minimum up and down times: The amount of capacity started up (Up,t) or shut down (Vp,t)

during each hour in each generation project is calculated via

Wg,t −Wg,t−1 = Ug,t − Vg,t, ∀g ∈ G,∀t ∈ T (15)

Additional constraints require that all capacity that was started up during an uptime look

back window (τ̂u
g , defined for each project technology) is still online, and that all capacity that

was shutdown during the downtime look back window (τ̂d
g ) remains uncommitted.

Wg,t ≥
t∑

t′=t−τ̂u
g

Ug,t′ , ∀g ∈ G,∀t ∈ T (16)

Wg,t ≤ KG
g −

t∑
t′=t−τ̂d

g

Vg,t′ , ∀g ∈ G,∀t ∈ T (17)

The variable Ug,t is also used to determine startup costs for each plant (not shown).

3.2 Oahu Configuration of Switch

Switch is configured based on Hawai’i’s 2007 power system data, together with finely gridded,

coincident, chronological wind and solar radiation data. Capital cost and fuel cost assump-

tions are based on Hawaiian Electric Company’s recent Power Supply and Improvement Plan

(https://www.hawaiianelectric.com/about-us/our-vision). Renewable resource poten-

tial is derived from screening available land resources as described below.

3.2.1 Utility-Scale Solar

Land available for utility-scale solar was restricted to parcels zoned for agricultural or country

use, excluding Class A agricultural land per Hawai’i statute. This is conservative because it

excludes a significant amount military land, and the military plans to install a considerable

amount of solar. We also excluded land with a slope greater than 10%, land within 50 meters of

street centerlines, and parcels with any directional dimension less than 60 meters. We assume

fixed-panel photovoltaic installations use six acres per MW (AC) of capacity and that tracking

photovoltaic installations use 7.5 acres per MW (AC) of capacity. These are roughly in the

lower quartile of the national statistics indicated by the National Renewable Energy Laboratory

(NREL)5. Fixed photovoltaic has a ground cover ratio of 0.68 and tracking systems have a

cover ratio of 0.45. These assumptions affect the capacity factor when the sun is low. We

then use NREL’s PV Watts tool to calculate hourly output for each 4 km cell using irradiance

data from the National Solar Radiation Database (NSRDB). The map of lands considered are

shown in figure 4.

5See http://www.nrel.gov/docs/fy13osti/56290.pdf.
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Figure 4: Land Available for Utility-Scale Solar

The map shows land that is assumed to be available for utility scale solar installations on Oahu given
zoning and other technical and legal constraints (shown in yellow). Each area circled in blue is entered
as a separate generation project in Switch, with different projects having different capacity limits and
hourly production profiles. Red lines indicate roads.

3.3 Rooftop Solar

Rooftop solar potential was estimated from roof area from Google Map images. Visual review

of many roofs indicates accurate identification. We assume 40 percent coverage of roofs, which

is equivalent to 15 percent of roofs being flat with 70 percent coverage and 85 percent are

sloped with 35 percent coverage. We estimate total capacity assuming 12 percent efficiency

with 1000 W/m2 irradiance (capacity = 120 W/m2). Hourly output was estimated using PV

Watts and the NSRD. figure 5 shows an image of rooftops on Oahu, including a closeup of the

UH Mānoa campus.

3.4 Wind Potential

On shore wind potential was estimated using a screening of available land similar to solar.

Only land zoned for agriculture or country and not within 300 meters of other zones was

considered. Slopes were restricted to 20 percent grade or less, and not within 30 meters of

steep slopes, to eliminate narrow ridge tops and valleys. A map of areas potentially developable

for wind is show in figure 7. We considered wind turbine density of 8.8 megawatts (MW) per

square kilometer (km2), which is conservatively less dense than the current Kahuku wind farm

already installed on the island (12.9 MW/km2), but on the high end of 5-8 MW/km2 that is

estimated by Denholm, Hand, Jackson and Ong (2009). Potential turbines were clustered by

region into separate scalable projects. Hourly behavior of each potential project—its coincident
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Figure 5: Estimating Potential Rooftop Solar

[6] 

Rooftop Solar 

m2 m2  

[6] 

Rooftop Solar 
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The bottom image shows rooftop space islandwide (in lighted in yellow). The image on top shows a
closeup of part of the Mānoa campus to demonstrate accuracy of rooftop identification.
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potential capacity—is calculated based on historical meteorological modeling conducted for the

Oahu Wind Integration and Transmission Study (Corbus, Schuerger, Roose, Strickler, Surles,

Manz, Burlingame and Woodford 2010). For all practical purposes, there is an unlimited

supply of off-shore wind potential with a high capacity factor of an estimated 43 percent,

which enters the model as a single scalable resource.

Figure 6: Potential wind farm locations

[8] 

Potential Wind Farm Locations 

The map shows land that is assumed to be available for on-shore wind development.

3.5 Time points and build scenarios

The model solves for a 30-year planning horizon and 12 representative days in each invest-

ment period, each representing a typical day from each month (the 15th), while constraining

the model to achieve the state’s 100 percent renewable energy goal by 2045 in the 100% scenar-

ios. We also solve models that constrain generation to be purely traditional fossil fuels, plus

a model that is unconstrained, and simply maximizes welfare (and minimizes costs) ignoring

pollution externalities. The analysis we perform here is a single stage analysis in the sense

that each scenario assumes all new assets are built at one point in time (i.e., 2045). Switch

is designed to consider a series of investment windows so as to optimize a long-run plan or

transition. However, because our focus in this paper is on the value of variable pricing, we

chose to simplify this part of the problem so as to provide more clarity about the long-run

tradeoffs of this critical policy choice. It is also possible to add more sample days to gain a

fuller representation of the joint distributions of time, weather, supply and demand; this does

not appear to change our results in a substantial way, but may be useful for fine-tuning an

actual resource plan.
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3.6 Equilibrium: Merging Switch with Demand

Iterations between Switch and the demand system were completed as follows. First, we

solve Switch for a baseline load profile, which is connected to either actual 2007 loads or

projected loads for 2045 (differences are discussed below). Tentative prices are derived as

marginal costs (shadow values of the constraints specified in equation 11), and these are offered

to the demand system. The demand system returns optimal quantities given these prices, and

also reports Marshallian consumer surplus minus a fixed offset – i.e., the line integral of demand

taken from baseline prices to offered prices. 6 Switch then minimizes the cost of serving the

new quantities, sending new prices based on marginal costs. During successive iterations,

Switch constructs a linearized demand system from the convex hull of the demand and total

willingness to pay (consumer surplus plus total expenditure). In other words, it approximates

total willingness to pay as a convex combination of willingness to pay from prior iterations

(i.e., any linear combination of prior bids with total weight of 100%). During each iteration,

Switch chooses a new system design to maximize welfare (willingness to pay minus cost) and

offers new prices. This cycle repeats until there is no further improvement in total surplus

from having new prices offered and receiving new bids.

This method is a Dantzig-Wolfe decomposition of the joint supply-demand problem (Dantzig

and Wolfe 1960). With this method, solutions from the supply problem, in which consumers

are given quantities based on the linearized demand function, represent a lower bound on

surplus; solutions from the demand problem, in which consumers can choose any amount

they want without changing prices, provide an upper bound on surplus. We stop iterating

when the difference between these two measures is less than 0.1 percent of baseline electricity

expenditure.

4 Cost assumptions and scenarios

4.1 Cost Assumptions

The inputs for the Switch model are based on Hawaiian Electric Company’s Power Supply

Improvement Plan (PSIP) and are summarized in table 2. The report lays out projected costs

each year from 2016 through 2045, and we consider models with costs at each endpoint to

show sensitivity of results to cost assumptions.

We summarize average capacity factors (normalized production potential) for the renewable

sources in figure ??. In the optimization model, capacity factors for each project vary by hour.

6To find the correct competitive equilibrium in this iterative manner requires that we use Marshallian surplus
rather than compensating or equivalent variation. Because nested-CES utility is well behaved and homoth-
etic, this integral is not path dependent (Takayama 1982). And because income effects are small, owing to
the fact that electricity expenditure is a small share of income, this measure of surplus is also very similar to
compensating and equivalent variation or money-metric utility. For this reason, we only report Marshallian
consumer surplus.
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Table 2: Summary of Cost Assumptions

Capital cost ($/MW) Unit cost ($/MMBtu) Op. &
Maint.

Category Description 2016 2045 2016 2045 ($/MW/Yr.)

New power generators

Combined Cycle Gas/Oil 1,653,242 1,415,952 17,452

Central Tracking PV 2,856,257 1,680,388 22,970

Distributed PV 3,650,295 1,511,097 -

Diesel Barge 1,323,183 1,323,328 34,214

Diesel MCBH 3,162,083 2,855,884 33,844

Diesel Schofield 2,481,336 2,241,312 33,844

Offshore Wind 6,205,598 3,882,934 96,710

Onshore Wind 2,459,329 1,986,498 27,400

Pumped Hydro 3,033,333 3,033,333

Storage

Battery 484,283
($/MWh)

146,639
($/MWh)

Hydrogren Electrolyzer 1,596,797 697,014

Hydrogen Fuel Cell 990,562 528,787

Hydrogen Liquifier 42,997 42,997

Inputs for fossil power plants

Biodiesel 30.37 48.68

Coal 2.74 3.60

Diesel 10.48 32.50

LNG bulk 6.26 22.01

LNG container 10.52 14.38

LSFO 7.95 29.56

Pellet Biomass 14.00 14.00

Note: Cost assumptions are derived from Hawaiian Electric Company’s Power Supply Improvement Plan from
December 2016. See https://www.hawaiianelectric.com/about-us/our-vision.

While projects with higher average capacity factors are more likely to be selected from the

optimization routine, the timing of output also matters.

4.2 Scenarios

We solve the full model under a large number of scenarios to explore sensitivity of results to

different assumptions. Specifically, the scenarios span all combinations of the following sets of

assumptions. Solving many scenarios also allows us to check internal consistency of results,

which is useful for developing some confidence that the models converged correctly.

Interhour demand flexibility (3) Pessimistic, Middling, Optimistic.7

Cost assumptions (2) HECO PSIP for 2016, 2045.

Overall electricity demand (4) 0.1, 0.5, 0.9, 2.0.

Electric vehicle share (3) 0.5%, 50%, 100%.

Policy Objective (3) Fossil, 100% Renewable, Unconstrained.

Baseline load profile (2) Projected 2045, Actual 2007.

7Baseline scenario in boldface.
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Figure 7: Average output and potential capacity of renewable energy sources on Oahu
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The graph shows the resource capacity of different potential sources of renewable energy, each ordered
from highest average output (capacity factor) to lowest. For perspective, peak demand on Oahu is about
1000 MW. A project with a 0.25 capacity factor would produce an average of 25% of its nameplate
capacity throughout the year.

Pricing scenario (2) Flat, Variable marginal-cost prices.

Most of the different sets of assumptions have been detailed above. We described the

different interhour demand flexibilities in sections 2.2 and 2.4. Cost assumptions for 2016 and

2045 are summarized in table 2. Overall demand is likely inelastic, so we focus mainly on results

with an overall demand elasticity for electricity of 0.1 (the elasticity of substitution between

electricity and all other goods). However, we do consider models with larger elasticities because

some scholars may find these more plausible, and because new uses for electricity may arise

that can make use of inexpensive electricity that would likely arise for significant stretches

under high-renewable scenarios. New intermittent demands may be more elastic.

The two load profiles, actual 2007 and projected 2045, differ mainly in their degree of

variability, including seasonality. Current demand tends to be considerably higher during

Summer and early Fall, while loads that the Hawaiian Electric Company projects for 2045 are

considerably flatter. Because seasonal variability may be more costly to manage than intraday

variability, comparison of these scenarios provides some sense of this cost of seasonality. We

do not have a strong sense of why Hawaiian Electric Company believes the load profile will

become flatter in the future, but we have augmented historical loads to match their projections

for peak and average load in 2045. Because HECO reports a projected peak load of 1065 MW

and average of 861.4, but the historical peak and average were 1249 and 955 (in 2007), the
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profile is flatter for 2045 than it is for 2007.8

Much of our discussion focuses on welfare differences between flat and variable, marginal-

cost pricing, and those scenarios are crossed with all other sets of assumptions. Considering all

combinations of the above scenarios yields 3×2×4×3×3×2×2 = 864 scenarios. Computing

time required to solve a single scenario can range from less than an hour for flat-price scenarios,

to nearly two days for some of the dynamic scenarios where many different resources are

on the margin. We used the University of Hawai’i’s high performance computing facility

with hundreds of state-of-the-art cores to solve many models simultaneously. Although space

constrains us from reporting all individual scenarios, we have characterized many of them here,

and have developed a website with drop down menus that will allow readers to explore details

of any particular scenario (http://www2.hawaii.edu/~mjrobert/power_production/).

In addition to the above scenarios, we also solved models along a path wherein we constrain

the percent renewable to a range of values between the least cost (unconstrained) portfolio

and 100% renewable, holding all else the same. This allows us to trace out the social cost

(loss in producer plus consumer surplus) of additional renewable energy under each set of

assumptions. Note that we do not consider the external cost of pollution emissions. The idea

is that whatever benefits society may glean from renewable energy above the minimum cost,

such as reduced pollution externalities, ought to be weighed against these cost curves.

Welfare calculations consider changes in Marshallian consumer surplus (CS), producer sur-

plus (PS), and charging costs for electrical vehicles (EV), which are treated separately but

included in total CS. We also calculated CS for each type of pseudo-customer, each having

different interhour flexibility and base load profiles. CS changes are similar to compensating

or equivalent variation, given the relatively small share of expenditure, so we do not report

CV or EV. Producer surplus is the change in revenue minus total cost. Note that these cal-

culations do not include fixed customer charges or rebates, which could be used to change the

overall balance of welfare between customers and producers. For this reason, it may be more

meaningful to focus on changes in total surplus and differences across pseudo-customers. Also

note that we do not explicitly account for fuel savings that may derive from greater EV use.

Comparison of low versus high EV scenarios are meant to show how EVs could change the

value of variable versus fixed pricing, since EVs embody a potentially large block of flexible

demand.

5 Results

To ease comparison of scenarios, results are reported as the difference between a particular

scenario and a baseline scenario. In most cases, the baseline scenario, indicated by the bold-

faced sets of assumptions in the list above, assumes fossil-based generation, future 2045 costs

8We derived projected future baseline demand by multiplying the historical loads by 0.693 and adding 200
MW.
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and projected load profile, flat pricing and an overall demand elasticity for electricity of 0.1

(the elasticity of substitution between electricity and all other goods). Note that under flat

pricing scenarios, interhour demand flexibility has no bearing on the outcome. We choose this

scenario as the baseline because we presume that it is the future that utilities envision in the

absence of renewable energy. To make welfare calculations easy to interpret, we report these

as percent differences from the baseline level of total expenditure on electricity.

5.1 Main Results

Table 3 reports the main results for scenarios with projected 2045 loads and costs. Compar-

ing different rows from this table, one can infer the value of variable pricing under both fossil

and high-penetration renewable systems. One can also infer the value of having more or less

optimism about the degree of interhour flexibility of demand. Finally, we can see how much

the projected cost trends favor renewables, by comparing current (2016) costs and projected

costs in 2045.

We present a larger set of results graphically in figures 18 and 10. The first figure shows

the value of real time marginal cost pricing in comparison to flat pricing, all else the same.

The second figure shows the social cost of a 100 percent renewable system (negative change in

producer plus consumer surplus) against fossil and unconstrained baseline scenarios, all else

the same.

To illustrate what a few scenarios look like in real time, figure 8 shows both consumption

and production mixes by hour and season for middling demand flexibility, the scenarios that

sit between the paired optimistic and pessimistic demand flexibility in table 3. For higher

resolution depictions of all 864 scenarios, see the interactive website at: http://www2.hawaii.

edu/~mjrobert/power_production/, which allows users to select desired scenarios from a

series of drop down menus.

Finally, in figures 11 and 12, we show how the social cost of renewable energy rises as the

share of renewable energy is gradually increased from the optimal portfolio (greatest social

welfare, excluding pollution externalities) to 100 percent renewable. The graphs summarize a

large number of scenarios and generally illustrate the value of variable versus flat pricing, the

role of electric vehicles, interhour demand flexibility and overall demand elasticity, and current

versus future technology assumptions.

The main observations that we can take from these results are:

• A small amount of demand-side flexibility is valuable. We can see this by observing that

the pessimistic scenarios, with less than one sixth the amount of flexible demand as the

optimistic cases, still benefit at least half as much from variable marginal-cost pricing as

the optimistic scenarios.

• Under current costs, the unconstrained system is mostly fossil fuels (4 - 5.6 percent

renewable), however under future projected costs, the unconstrained system is mostly
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renewable (73 - 80 percent). Increasing renewable energy shares 5-15 percentage points

above these baselines tends to be inexpensive.

• Dynamic pricing in the unconstrained scenarios lowers costs while increasing the share of

renewables. This value increases over time as the cost of renewables relative to fossil fuels

declines, and renewable energy makes up a larger share of electricity in unconstrained

scenarios.

• A 100 percent renewable system is projected to be less costly than a fossil system by

2045, but only under dynamic pricing.

• The value of dynamic pricing accrues mostly to consumers and may actually reduce

producer surplus, while total surplus always increases with dynamic pricing. Adjustments

in fixed charges could change this imbalance.

• Dynamic marginal cost pricing is considerably more valuable the greater the penetration

of renewable energy, rising from about 2.6% under the baseline scenario with pessimistic

demand flexibility, to 23.4 percent in a 100 percent renewable system with optimistic

demand flexibility. Note that if the overall demand elasticity were larger, the value of

dynamic pricing would also be greater, as high as 47 percent when θ = 2 and the portfolio

is constrained to be 100 percent renewable (results reported in the appendix).

• The production and consumption profiles indicate that in high-renewable scenarios, the

value of the variable pricing mainly derives from considerably less use of batteries. In

scenarios with more elastic overall demand, much greater value is realized by growing

demand during low cost times when renewable energy is abundant.

• While variable pricing benefits more flexible demand types more than inflexible demand

types, even inflexible demand types tend to benefit from variable pricing, and in some

cases, nearly as much as flexible demand types.9

• Optimal dynamic prices vary a lot between days as well as within days, with many days

having zero or near-zero prices nearly all day, and other days having very high prices all

day, even midday during peak sun. Put another way, storage and interhour substitution

can arbitrage away much of the price differences between hours, but low-sun/low-wind

days may have high prices all day.

9This analysis accounts for the estimated baseline load profiles of more-flexible and less-flexible demand, but
it does not account for individual heterogeneity of load profiles across customers. Residential customers,
for example, may have little midday demand and high morning and evening demand, which would be more
costly to serve.
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Table 3: Main Results: Change in surpluses relative to baseline future fossil system with flat prices as a percent of baseline
expenditure.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Policy
Objec-

tive

Cost Demand
Flexibil-

ity

Pricing % Re-
new-
able

Price
($/MWh)

Mean Q
(MWh/hr.)

SD of
Price

($/MWh)

∆ CS
(%.)

∆ EV
Cost
(%)

∆ PS
(%)

∆ TS
(%)

∆ CS
High-
flex
(%)

∆ CS
Midflex

(%)

∆ CS
Inflex
(%)

∆ TS
Dyn
(%)

Flat 4.12 87 944 0 33.6 -41.8 8.1 41.7 30.9 30.9 30.9
Optimistic

Dynamic 3.99 62 980 2 58.9 -58.2 -12.6 46.3 51.8 51.8 51.8
4.6

Flat 4.12 87 945 0 36.1 -37.2 5.1 41.2 31.5 31.5 31.5

C
u
rr

en
t

Pessimistic
Dynamic 4.01 61 972 0 54.1 -57.4 -8.8 45.3 53.1 48.2 47.8

4.1

Flat 4.27 124 906 0 —————————— B a s e l i n e ——————————
Optimistic

Dynamic 4.31 131 900 3 -4.9 -2.7 8.4 3.4 -5.8 -5.8 -5.8
3.4

Flat 4.28 126 904 0 —————————— B a s e l i n e ——————————

F
os

si
l

F
u
tu

re

Pessimistic
Dynamic 4.25 107 912 0 8 -20.8 -5.5 2.6 14.8 6.3 5.4

2.6

Flat 100 173 871 0 -38.9 36 -1.6 -40.5 -38.3 -38.3 -38.3
Optimistic

Dynamic 100 128 959 86 -12.6 -15.5 -4.5 -17.1 3.1 -15.9 -25.7
23.4

Flat 100 171 871 0 -37.1 33.8 -2.9 -40 -35 -35 -35

C
u
rr

en
t

Pessimistic
Dynamic 100 137 931 96 -24.8 -14.9 -1.3 -26.1 6.4 -17.8 -28.9

13.9

Flat 100 98 931 0 25 -30 -28.6 -3.6 21.2 21.2 21.2
Optimistic

Dynamic 100 84 1047 75 39.3 -52.9 -29.2 10.1 43.4 30.9 26.2
13.7

Flat 100 98 931 0 25.3 -29.1 -28.9 -3.6 22.4 22.4 22.410
0%

R
en

ew
ab

le

F
u
tu

re

Pessimistic
Dynamic 100 92 1016 80 33.9 -51.5 -29 4.9 45.2 31.7 27

8.5

Flat 5.39 88 943 0 34.8 -23.7 6.9 41.7 29.7 29.7 29.7
Optimistic

Dynamic 3.99 62 980 2 58.9 -58.2 -12.6 46.3 51.8 51.8 51.8
4.6

Flat 5.63 82 949 0 38.3 -37.7 2.9 41.2 35.9 35.9 35.9

C
u
rr

en
t

Pessimistic
Dynamic 4.02 61 972 0 53.4 -57.4 -8 45.3 53.1 47.8 47.3

4.1

Flat 73 87 944 0 35.4 -35.7 -6 29.4 30.6 30.6 30.6
Optimistic

Dynamic 80 71 994 32 45.5 -55.3 -6.7 38.7 45.7 37.5 34.4
9.3

Flat 73 87 944 0 35.4 -34.7 -6.3 29.1 31.6 31.6 31.6U
n
co

n
st

ra
in

ed

F
u
tu

re

Pessimistic
Dynamic 79 79 976 39 39.3 -54.4 -4.8 34.6 47.1 36.3 32.4

5.5

Notes: In all of the scenarios presented in this table, the overall demand elasticity for electricity (θ) equals 0.1, the baseline load profile is that projected for 2045, and electric vehicles are assumed
to comprise 50% of the fleet. Each scenario (row in the table) is defined by assumptions delineated in the first four columns. The first column (Policy Objective) indicates exogenous constraints
determined by policy: The Fossil scenario restricts any new installation of renewable energy, but is otherwise least cost; the 100% Renewable scenario reflects the intended outcome of the State’s
Renewable Portfolio Standard, and the Unconstrained scenario maximizes welfare without any constraints on the mix of power plants. The second column indicates whether current costs (2016)
or the present value of future costs projected for 2045 from HECO’s Power Supply and Improvement Plan are assumed. The third column indicates the degree of demand flexibility, as detailed
in table 1. The fourth column indicates whether retail prices are flat or dynamic (time-varying and equal to marginal cost). The remaining columns summarize the outcomes of the conditionally
optimized system: average price, average quantity, standard deviation of price, and changes in surpluses from the baseline case (fossil system, future costs, and flat pricing). All changes welfare
are reported as the percent difference relative to the baseline level of expenditure on electricity. %∆EV is simply the percent change in charging costs for electric vehicles from the base case. Note
that ∆CS includes EV changes. We also examine changes in welfare for different demand flexibilities, which only matters for dynamic pricing scenarios. The last column reports the social value
of dynamic pricing holding all else the same.
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Figure 8: Hourly production and consumption profiles for several scenarios with middling interhour demand flexiblity.
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The scenarios presented above assume the middling scenario for interhour substitutability of demand, an inelastic overall demand elasticity for electricity equal to 0.1, a baseline
demand profile projected for 2045, a vehicle fleet with 50% electric vehicles, and costs of production as projected for 2045 in HECO’s Power Supply and Improvement Plan. The
first two rows show fossil-fuel systems with flat and dynamic, real-time pricing; the next two rows show 100% renewable systems with flat and dynamic pricing; and the last
two rows show the welfare-maximizing systems (resource unconstrained) with flat and dynamic pricing. Higher resolution graphs for all scenarios can be viewed at the website:
www2.hawaii.edu/~mjrobert/power_production/.
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Figure 9: Surplus gain from dynamic pricing under different policy, cost and demand flexibility scenarios.

The graph shows the difference in total economic surplus with real-time marginal-cost pricing and total surplus when
prices are flat, holding all else the same. Total surplus change is reported as a percentage of baseline (flat price)
expenditure on electricity. The graph depicts all scenarios with an overall demand elasticity of 0.1; results for larger
overall elasticities are shown in the appendix. The top row shows the value of variable pricing under current costs;
the bottom row shows the value of variable pricing under projected future costs (2045). The horizontal axis shows
the policy scenario: fossil, 100% renewable or unconstrained (maximum surplus, regardless of source). The bars
show the baseline case with 50 percent electric vehicle fleet and 2045 load profile, the diamonds show the 2007 load
profile, and the error bars show how results differ with 0.5 percent and 100 percent electric vehicles–more electric
vehicles always increase the value of variable pricing.
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Figure 10: Cost of 100 percent renewable energy system under different policy, cost and demand flexibility scenarios.

The graph shows the difference in total economic surplus with a 100 percent renewable system versus the baseline
scenario given on the horizontal axis, holding all else the same. Total surplus change is reported as a percentage of
baseline expenditure on electricity. The graph depicts all scenarios with an overall demand elasticity of 0.1; results
for larger overall elasticities are shown in the appendix. The top row shows the value of variable pricing under
current costs; the bottom row shows the value of variable pricing under projected future costs (2045). The horizontal
axis shows the policy scenario: fossil, 100% renewable or unconstrained (maximum surplus, regardless of source).
The bars show the baseline case with 50 percent electric vehicle fleet and 2045 load profile, the diamonds show the
2007 load profile, and the error bars show how results differ with 0.5 percent and 100 percent electric vehicles–more
electric vehicles always increase the value of variable pricing.
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Figure 11: The social cost of renewable electricity in 2045 under different pricing, electric vehicle
and electricity demand scenarios.

The graphs show the loss in total economic surplus (PS + CS, or total willingness to pay less total cost) for
different shares of renewable electricity, with cost measured as a percent of total electricity expenditure in the
baseline scenario under Hawaiian Electric Company’s projected costs for capital, fuels and batteries in year 2045.
The left panel assumes only 0.5% of the vehicle fleet is electric (the current share) and the right panel assumes
100% of the vehicle fleet is electric. The solid lines indicate flat pricing and dashed lines indicate dynamic variable
pricing. The lighter dashed lines assume optimistic interhour flexibility of demand and the darker lines assume
pessimistic interhour flexibility. The blue lines indicate baseline overall demand for electricity (elasticity = 0.1) and
the green lines assume an elastic overall demand for electricity (elasticity = 2.0). Note that the scale here differs
slightly from table 3 figures 18 and 10, where all percent changes are relative to the same baseline in order to allow
absolute comparisons across all scenarios. Here the metric is 100% ×Maximum surplus - Surplus at given renewable share

baseline expenditure ,
where baseline expenditure is the same as that reported in table 3 or in the corresponding table in the appendix.
The baseline does change for different θ and share of EV’s.

5.2 Supplementary results

In the appendix we report results from scenarios that are exactly like those reported in

table 3, except we change individual assumptions that were held constant across all scenarios

in the main results. We also replicate figures 18 and 10 for different overall demand elasticities.

These results mainly show that the value of dynamic pricing increases considerably, and the

social cost of renewable energy falls, with a greater share of electric vehicle use and a higher

overall demand elasticity.

6 Discussion

We developed the first integrated model of power supply, nonlinear demand, storage and

reserves that simultaneously optimizes investment and chronological management of the sys-
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Figure 12: The social cost of renewable electricity under current versus future technology.

The graphs show the loss in total economic surplus (consumer surplus less total cost) for different shares of renewable
electricity, with cost measured as a percent of total electricity expenditure in the baseline scenario under Hawaiian
Electric Company’s cost assumptions for capital, fuels and batteries. All of the scenarios depicted assume 50% of the
vehicle fleet is electric. The left panel shows the baseline overall demand for electricity (elasticity = 0.1) and the right
panel shows an elastic overall demand for electricity (elasticity = 2.0). The solid lines indicate flat pricing and dashed
lines indicate dynamic variable pricing. The lighter dashed lines assume optimistic interhour flexibility of demand
and the darker lines assume pessimistic interhour flexibility. The green lines indicate future projected technology
and costs (2045, as in figure 11), and the blue lines show current costs (2016). Note that baseline expenditure can
differ across scenarios — it is the same as that reported in table 3 or in the corresponding table in the appendix.
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tem, with and without constraints on the share of renewable energy. The model is open source

and generalizable to other settings with multiple nodes, transmission considerations, and mul-

tiple investment windows. We use this model to evaluate the benefits of variable pricing in

comparison to flat pricing for fossil-based, unconstrained and high-renewable systems on Oahu,

Hawai’i’s most populous island. We find that variable pricing is considerably more valuable in

high-renewable systems, that a large share of renewables will soon be optimal, even excluding

externalities, and that the optimal renewable share is higher with variable pricing than it is

with flat pricing.

Optimal power systems with a high share of renewables can use batteries and/or demand

response to cost-effectively manage day-night and other short-term variations in supply. The

larger challenge with intermittent renewables concerns seasonality and episodic or prolonged

shortfalls in power generation. The optimized system manages these variations by striking

a balance between overbuilding generation capacity for normal and resource rich times and,

during resource poor times, using high-cost biofuels in traditional power plants and increasing

prices to limit demand.10 Unlike current fossil-based power systems wherein the main benefit

of variable pricing comes from limiting peak demand, the benefits of variable pricing in high-

renewable systems are multifaceted, lowering the cost of day-night balance, helping to limit

generation capacity by staving off demand during resource lean times (not necessarily peak

demand), and allowing greater social benefit from higher electricity use during resource rich

times.

The last phenomenon—new uses of low-cost power—is a key source of value from variable

pricing in high-renewable systems, especially when overall demand is more elastic. Although

existing empirical studies suggest that demand is inelastic, we speculate that some of the inelas-

ticity stems from the fact that retail pricing tends to be flat. It is hard to know how demand

could evolve in an environment with long spells of essentially free energy. Currently cost-

prohibitive energy uses, like desalination, may be both flexible in their timing and economic

in high-renewable systems with long stretches of cheap power. Alternatively, new long-term,

low-cost storage options may arise if appropriately incentivized. While flexible uses of low-cost

power are speculative, they do seem plausible, and are what we have in mind in scenarios with

higher demand elasticities. The benefit of more elastic demand is two-fold: it includes the

extra surplus from more electricity consumption while making it easier to curb demand during

resource lean times.

Some have suggested that the viability of low-cost, high-penetration renewable energy

reflects Hawai’i’s unique characteristics: the state is rich in wind and solar resources, but

10Switch also includes a hydrogen storage option, wherein excess generation produced in resource rich times is
used to make hydrogen from water, which is then stored for fuel cell generation in resource lean times. This
technology is not economic in most of our scenarios, but does show up in limited capacity in a few of them.
Similarly, a pumped-water hydropower option that would make use of an existing reservoir is not economic
in any of our scenarios.
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must otherwise import fossil fuels a great distance, making fossil fuels expensive relative to

renewable alternatives. The unconstrained options also rule out additional installations of new

coal-fired power plants. Still, the cost assumptions used in this analysis are fairly conservative,

especially in light of rapid technological advancement in the last few years. By some estimates,

such as Bloomberg New Energy Finance and Lazard,11 current renewable energy and battery

technology costs already rival Hawaiian Electric Company’s projections for 2045 (Lazard 2017).

At the same time, renewable energy in Hawai’i is in some ways more challenging than other

locations, due to its extreme isolation. In continental regions, which have much more connec-

tivity, transmission provides another, potentially lower-cost method of managing intermittency

challenges, as well as transferring renewable power from areas rich in renewable resources to

areas that are renewable energy poor. The modeling framework presented here can be used to

assess the substitution possibilities between transmission and demand response, and generally

optimizing high-dimensional chronological power systems in a realistic way. Solving such a

model would be computationally expensive, perhaps two orders of magnitude more expensive

that our model of the island of Oahu, but potentially feasible with solution algorithms that

could subdivide the larger problem and thereby make use of modern parallel computing.

We believe these results provide credible evidence that high-penetration renewable energy

is viable at reasonable economic cost in many places soon. The low cost of renewable energy

greatly strengthens the case for real-time dynamic pricing options at the retail level.

11See https://about.bnef.com/blog/ and https://www.lazard.com/perspective/

levelized-cost-of-energy-2017/
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Figure 13: Surplus gain from dynamic pricing under different policy, cost and demand flexibility scenarios when the overall demand
elasticity equals 0.5.

The graph shows the difference in total economic surplus with real-time marginal-cost pricing and total surplus when
prices are flat, holding all else the same. Total surplus change is reported as a percentage of baseline (flat price)
expenditure on electricity. The graph depicts all scenarios with an overall demand elasticity of 0.5 instead of 0.1 as
reported in the main paper. The top row shows the value of variable pricing under current costs; the bottom row
shows the value of variable pricing under projected future costs (2045). The horizontal axis shows the policy scenario:
fossil, 100% renewable or unconstrained (maximum surplus, regardless of source). The bars show the baseline case
with 50 percent electric vehicle fleet and 2045 load profile, the diamonds show the 2007 load profile, and the error
bars show how results differ with 0.5 percent and 100 percent electric vehicles–more electric vehicles always increase
the value of variable pricing.
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Figure 14: Cost of 100 percent renewable energy system under different policy, cost and demand flexibility scenarios when the
overall demand elasticity equals 0.5.

The graph shows the difference in total economic surplus with a 100 percent renewable system versus the baseline
scenario given on the horizontal axis, holding all else the same. Total surplus change is reported as a percentage of
baseline expenditure on electricity. The graph depicts all scenarios with an overall demand elasticity of 0.5 instead
of 0.1 as reported in the main paper. The top row shows the value of variable pricing under current costs; the
bottom row shows the value of variable pricing under projected future costs (2045). The horizontal axis shows the
policy scenario: fossil, 100% renewable or unconstrained (maximum surplus, regardless of source). The bars show
the baseline case with 50 percent electric vehicle fleet and 2045 load profile, the diamonds show the 2007 load profile,
and the error bars show how results differ with 0.5 percent and 100 percent electric vehicles–more electric vehicles
always increase the value of variable pricing.
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Figure 15: Surplus gain from dynamic pricing under different policy, cost and demand flexibility scenarios when the overall demand
elasticity equals 0.9.

The graph shows the difference in total economic surplus with real-time marginal-cost pricing and total surplus when
prices are flat, holding all else the same. Total surplus change is reported as a percentage of baseline (flat price)
expenditure on electricity. The graph depicts all scenarios with an overall demand elasticity of 0.9 instead of 0.1 as
reported in the main paper. The top row shows the value of variable pricing under current costs; the bottom row
shows the value of variable pricing under projected future costs (2045). The horizontal axis shows the policy scenario:
fossil, 100% renewable or unconstrained (maximum surplus, regardless of source). The bars show the baseline case
with 50 percent electric vehicle fleet and 2045 load profile, the diamonds show the 2007 load profile, and the error
bars show how results differ with 0.5 percent and 100 percent electric vehicles–more electric vehicles always increase
the value of variable pricing.
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Figure 16: Cost of 100 percent renewable energy system under different policy, cost and demand flexibility scenarios when the
overall demand elasticity equals 0.9.

The graph shows the difference in total economic surplus with a 100 percent renewable system versus the baseline
scenario given on the horizontal axis, holding all else the same. Total surplus change is reported as a percentage of
baseline expenditure on electricity. The graph depicts all scenarios with an overall demand elasticity of 0.9 instead
of 0.1 as reported in the main paper. The top row shows the value of variable pricing under current costs; the
bottom row shows the value of variable pricing under projected future costs (2045). The horizontal axis shows the
policy scenario: fossil, 100% renewable or unconstrained (maximum surplus, regardless of source). The bars show
the baseline case with 50 percent electric vehicle fleet and 2045 load profile, the diamonds show the 2007 load profile,
and the error bars show how results differ with 0.5 percent and 100 percent electric vehicles–more electric vehicles
always increase the value of variable pricing.
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Figure 17: Surplus gain from dynamic pricing under different policy, cost and demand flexibility scenarios when the overall demand
elasticity equals 2.

The graph shows the difference in total economic surplus with real-time marginal-cost pricing and total surplus when
prices are flat, holding all else the same. Total surplus change is reported as a percentage of baseline (flat price)
expenditure on electricity. The graph depicts all scenarios with an overall demand elasticity of 2 instead of 0.1 as
reported in the main paper. The top row shows the value of variable pricing under current costs; the bottom row
shows the value of variable pricing under projected future costs (2045). The horizontal axis shows the policy scenario:
fossil, 100% renewable or unconstrained (maximum surplus, regardless of source). The bars show the baseline case
with 50 percent electric vehicle fleet and 2045 load profile, the diamonds show the 2007 load profile, and the error
bars show how results differ with 0.5 percent and 100 percent electric vehicles–more electric vehicles always increase
the value of variable pricing.
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Figure 18: Cost of 100 percent renewable energy system under different policy, cost and demand flexibility scenarios when the
overall demand elasticity equals 2.

The graph shows the difference in total economic surplus with a 100 percent renewable system versus the baseline
scenario given on the horizontal axis, holding all else the same. Total surplus change is reported as a percentage of
baseline expenditure on electricity. The graph depicts all scenarios with an overall demand elasticity of 2 instead
of 0.1 as reported in the main paper. The top row shows the value of variable pricing under current costs; the
bottom row shows the value of variable pricing under projected future costs (2045). The horizontal axis shows the
policy scenario: fossil, 100% renewable or unconstrained (maximum surplus, regardless of source). The bars show
the baseline case with 50 percent electric vehicle fleet and 2045 load profile, the diamonds show the 2007 load profile,
and the error bars show how results differ with 0.5 percent and 100 percent electric vehicles–more electric vehicles
always increase the value of variable pricing.
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Table 4: Supplementary Results: Surplus changes relative to baseline if actual loads from 2007.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Policy
Objec-

tive

Cost Demand
Flexibil-

ity

Pricing % Re-
new-
able

Price
($/MWh)

Mean Q
(MWh/hr.)

SD of
Price

($/MWh)

∆ CS
(%.)

∆ EV
Cost
(%)

∆ PS
(%)

∆ TS
(%)

∆ CS
High-
flex
(%)

∆ CS
Midflex

(%)

∆ CS
Inflex
(%)

∆ TS
Dyn
(%)

Flat 3.78 91 1043 0 32.7 -28.6 8.2 40.9 27.8 27.8 27.8
Optimistic

Dynamic 3.64 63 1085 4 57.7 -56.6 -12.2 45.5 50.9 50.9 50.9
4.6

Flat 3.78 91 1043 0 32.6 -27.1 8 40.7 28.3 28.3 28.3

C
u
rr

en
t

Pessimistic
Dynamic 3.65 61 1084 0 56.4 -56.1 -12 44.4 53 50.4 50.2

3.7

Flat 3.90 125 1005 0 —————————— B a s e l i n e ——————————
Optimistic

Dynamic 3.89 121 1007 11 4.4 -10.4 -0.6 3.9 2.3 2.3 2.3
3.9

Flat 3.90 125 1004 0 —————————— B a s e l i n e ——————————

F
os

si
l

F
u
tu

re

Pessimistic
Dynamic 3.91 116 1004 10 0.4 -13.2 2.6 3 7.6 -1.3 -2

3

Flat 100 171 967 0 -41.1 40.7 1.3 -39.8 -36.4 -36.4 -36.4
Optimistic

Dynamic 100 128 1063 87 -12.2 -14.4 -3.9 -16.1 3.1 -16.1 -26
23.7

Flat 100 172 967 0 -39.1 39.6 -0.4 -39.5 -36.5 -36.5 -36.5

C
u
rr

en
t

Pessimistic
Dynamic 133 1034 91 -22.2 -14.8 -3.9 -26.1 7.5 -16.1 -26.9

13.4

Flat 100 98 1033 0 25.3 -29.5 -25.7 -0.4 21.4 21.4 21.4
Optimistic

Dynamic 100 84 1159 75 39 -51.3 -25.9 13.1 43.1 30.8 26.4
13.5

Flat 100 98 1033 0 25.3 -28.2 -25.7 -0.4 22 22 2210
0%

R
en

ew
ab

le

F
u
tu

re

Pessimistic
Dynamic 100 92 1127 82 33.5 -49.9 -25.5 8 44.6 31 26.6

8.4

Flat 3.68 72 1072 0 49.6 -44.9 -8.7 41 43.3 43.3 43.3
Optimistic

Dynamic 6.24 74 1067 7 47.9 -48.8 -1.2 46.7 41.8 41.8 41.8
5.7

Flat 3.68 70 1072 0 49.4 -43.4 -8.7 40.7 45.6 45.6 45.6

C
u
rr

en
t

Pessimistic
Dynamic 3.65 61 1083 0 55.9 -56.1 -11.5 44.4 53 50 49.7

3.7

Flat 74 88 1046 0 34.4 -34.7 -4.4 30 30 30 30
Optimistic

Dynamic 72 1105 38 44.1 -53.7 -5.3 38.8 45.6 38.7 34.5
8.8

Flat 74 88 1046 0 34.4 -33.3 -4.6 29.8 30.6 30.6 30.6U
n
co

n
st

ra
in

ed

F
u
tu

re

Pessimistic
Dynamic 81 80 1085 42 38.2 -52.2 -3.1 35.1 45.9 35.2 31.2

5.3

Notes: Like table 3, except baseline demand is tied to actual 2007 loads, not projected loads for 2045.
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Table 5: Supplementary Results: Surplus changes relative to baseline if fewer electric vehicles (0.5 percent).

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Policy
Objec-

tive

Cost Demand
Flexibil-

ity

Pricing % Re-
new-
able

Price
($/MWh)

Mean Q
(MWh/hr.)

SD of
Price

($/MWh)

∆ CS
(%.)

∆ EV
Cost
(%)

∆ PS
(%)

∆ TS
(%)

∆ CS
High-
flex
(%)

∆ CS
Midflex

(%)

∆ CS
Inflex
(%)

∆ TS
Dyn
(%)

Flat 4.39 60 982 0 54 -54.2 -17.3 36.7 54.5 54.5 54.5
Optimistic

Dynamic 4.30 50 1002 1 63.2 -61.8 -23.9 39.3 62.9 62.8 62.8
2.6

Flat 4.51 77 955 0 38.8 -44.8 -2.8 36.1 39.8 39.8 39.8

C
u
rr

en
t

Pessimistic
Dynamic 4.35 49 990 1 56.7 -63.7 -18.2 38.5 63.9 56.7 55.8

2.4

Flat 4.76 126 904 0 —————————— B a s e l i n e ——————————
Optimistic

Dynamic 4.70 120 911 12 7.1 -14.1 -4.7 2.5 5.2 4.7 4.7
2.5

Flat 4.76 126 904 0 —————————— B a s e l i n e ——————————

F
os

si
l

F
u
tu

re

Pessimistic
Dynamic 4.74 111 908 5 3.4 -18.4 -2.4 1.1 12 3.4 2.5

1.1

Flat 100 164 876 0 -29.2 31.1 -7.1 -36.3 -29.6 -29.6 -29.6
Optimistic

Dynamic 100 126 961 86 -12.5 -14.2 -6.1 -18.6 5.7 -13.6 -23
17.7

Flat 100 161 877 0 -29.3 23.6 -6.8 -36.1 -27.3 -27.3 -27.3

C
u
rr

en
t

Pessimistic
Dynamic 100 134 936 95 -23.2 -19.9 -4.7 -27.9 10 -15.3 -26.4

8.2

Flat 100 98 931 0 22.9 -25.1 -29.6 -6.7 22.5 22.5 22.5
Optimistic

Dynamic 100 84 1043 74 34.2 -48.1 -29.8 4.4 44.4 31.4 27.2
11.1

Flat 100 98 931 0 22.9 -25.1 -29.6 -6.7 22.6 22.6 22.610
0%

R
en

ew
ab

le

F
u
tu

re

Pessimistic
Dynamic 100 91 1008 80 29.2 -49.7 -29.9 -0.7 46 31.7 27.5

6

Flat 4.49 76 960 0 41.8 -29.5 -5.3 36.4 40.7 40.7 40.7
Optimistic

Dynamic 4.34 57 987 5 56.7 -59.3 -15.9 40.8 57.6 57.1 57.1
4.4

Flat 4.39 61 982 0 54.3 -54.4 -17.6 36.6 53.2 53.2 53.2

C
u
rr

en
t

Pessimistic
Dynamic 4.34 49 993 1 57.8 -63.7 -19.5 38.3 63.9 58.1 57.4

1.7

Flat 75 93 937 0 26.1 -27.7 -0.4 25.6 26.8 26.8 26.8
Optimistic

Dynamic 71 995 32 40.2 -50.7 -7.8 32.4 46.8 38.6 35.6
6.8

Flat 75 93 936 0 26.4 -27.8 -0.7 25.6 26.4 26.4 26.4U
n
co

n
st

ra
in

ed

F
u
tu

re

Pessimistic
Dynamic 76 79 973 38 33.9 -51.7 -5.2 28.6 47.5 36 32.3

3

Notes: Like table 3, except the share of electric vehicles is 0.5% (the current share of the fleet) instead of 50%.

45



Table 6: Supplementary Results: Surplus changes relative to baseline if more electric vehicles (100 percent).

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Policy
Objec-

tive

Cost Demand
Flexibil-

ity

Pricing % Re-
new-
able

Price
($/MWh)

Mean Q
(MWh/hr.)

SD of
Price

($/MWh)

∆ CS
(%.)

∆ EV
Cost
(%)

∆ PS
(%)

∆ TS
(%)

∆ CS
High-
flex
(%)

∆ CS
Midflex

(%)

∆ CS
Inflex
(%)

∆ TS
Dyn
(%)

Flat 3.77 91 941 0 34.9 -31.8 10.4 45.3 27.4 27.4 27.4
Optimistic

Dynamic 3.71 77 958 5 48.3 -41.3 3.5 51.7 38.9 38.9 38.9
6.4

Flat 3.77 91 941 0 32.4 -22 13 45.5 27.1 27.1 27.1

C
u
rr

en
t

Pessimistic
Dynamic 75 956 0 47.6 -45.6 4.2 51.8 41.1 38.1 37.8

6.3

Flat 3.88 125 905 0 —————————— B a s e l i n e ——————————
Optimistic

Dynamic 3.88 121 907 10 3.1 -5.3 1.4 4.5 3.2 3.2 3.2
4.5

Flat 3.88 124 905 0 —————————— B a s e l i n e ——————————

F
os

si
l

F
u
tu

re

Pessimistic
Dynamic 3.87 121 910 11 5.8 -10.9 -1.3 4.5 2.6 2.4 2.4

4.5

Flat 100 166 872 0 -42.2 33.8 -2.3 -44.5 -32.7 -32.7 -32.7
Optimistic

Dynamic 100 128 957 88 -13 -9.7 -2.5 -15.5 3.4 -16.3 -25.5
29

Flat 100 171 871 0 -41.9 29.6 -2.8 -44.7 -37 -37 -37

C
u
rr

en
t

Pessimistic
Dynamic 100 137 930 96 -24.9 -13.4 0.1 -24.8 4.7 -19 -30.3

19.9

Flat 100 98 931 0 26.4 -24.5 -26.7 -0.4 21.6 21.6 21.6
Optimistic

Dynamic 100 85 1048 75 42.6 -46.7 -26.8 15.8 43 31.1 26.2
16.2

Flat 100 98 931 0 27 -28 -27.4 -0.4 21.3 21.3 21.310
0%

R
en

ew
ab

le

F
u
tu

re

Pessimistic
Dynamic 100 93 1021 83 37.9 -50.3 -27.1 10.8 44.3 30.7 25.5

11.2

Flat 3.93 75 960 0 49.5 -36 -4.1 45.4 41 41 41
Optimistic

Dynamic 6.09 73 962 4 52.5 -44.6 -0.7 51.8 42.7 42.7 42.7
6.4

Flat 4.67 89 941 0 33.4 -19.9 12.1 45.5 28.7 28.7 28.7

C
u
rr

en
t

Pessimistic
Dynamic 5.88 72 961 4 49.8 -49.6 2 51.8 42.9 41.5 41.4

6.3

Flat 74 89 942 0 35.9 -30.3 -2.8 33.1 29.7 29.7 29.7
Optimistic

Dynamic 81 73 993 36 47.9 -48.4 -3.3 44.6 44.4 36.5 33.2
11.5

Flat 75 88 942 0 36.6 -34.1 -3.3 33.3 29.7 29.7 29.7U
n
co

n
st

ra
in

ed

F
u
tu

re

Pessimistic
Dynamic 81 80 977 41 43.8 -53 -2.7 41.1 45.6 35.1 31

7.8

Notes: Like table 3, except the share of electric vehicles is 100% instead of 50%.
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Table 7: Supplementary Results: Surplus changes if overall demand elasticity = 0.5

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Policy
Objec-

tive

Cost Demand
Flexibil-

ity

Pricing % Re-
new-
able

Price
($/MWh)

Mean Q
(MWh/hr.)

SD of
Price

($/MWh)

∆ CS
(%.)

∆ EV
Cost
(%)

∆ PS
(%)

∆ TS
(%)

∆ CS
High-
flex
(%)

∆ CS
Midflex

(%)

∆ CS
Inflex
(%)

∆ TS
Dyn
(%)

Flat 3.11 82 1283 0 48.4 -38.2 2.5 50.9 35.1 35.1 35.1
Optimistic

Dynamic 2.68 61 1508 2 77.7 -59.7 -21.6 56 53.4 53.4 53.4
5.1

Flat 3.11 84 1283 0 45.6 -36 5.3 50.9 33.5 33.5 33.5

C
u
rr

en
t

Pessimistic
Dynamic 2.46 49 1648 0 90 -66.5 -37.2 52.8 63.5 61.9 61.7

1.9

Flat 3.76 125 1043 0 —————————— B a s e l i n e ——————————
Optimistic

Dynamic 3.80 127 1033 4 -0.4 -6.1 4.1 3.7 -2 -2 -2
3.7

Flat 3.76 125 1043 0 —————————— B a s e l i n e ——————————

F
os

si
l

F
u
tu

re

Pessimistic
Dynamic 3.64 107 1083 0 9.1 -20 -6.3 2.8 14.3 6.9 6.4

2.8

Flat 100 171 888 0 -43.6 39.9 0.5 -43.1 -36.2 -36.2 -36.2
Optimistic

Dynamic 100 128 1064 62 -11.5 -15.5 -0.1 -11.7 1.8 -19.5 -28.3
31.4

Flat 100 173 886 0 -45.3 39.9 2.1 -43.1 -37.2 -37.2 -37.2

C
u
rr

en
t

Pessimistic
Dynamic 100 138 989 80 -27.9 -13 4.9 -23 3.2 -21.4 -32.3

20.1

Flat 100 102 1159 0 26.8 -27.9 -26.2 0.6 18.8 18.8 18.8
Optimistic

Dynamic 100 82 1370 37 48.6 -53.2 -25.6 23 42.3 29.1 25.2
22.4

Flat 100 102 1159 0 24.5 -26 -23.9 0.6 18.8 18.8 18.810
0%

R
en

ew
ab

le

F
u
tu

re

Pessimistic
Dynamic 100 91 1277 41 38.4 -50.8 -22.4 16 43 28.8 24.7

15.4

Flat 3.23 83 1283 0 48.3 -37.7 2.7 50.9 34.1 34.1 34.1
Optimistic

Dynamic 2.67 60 1509 2 78.5 -60 -22.5 56.1 53.6 53.6 53.6
5.2

Flat 3.23 84 1283 0 45.4 -35.2 5.5 50.9 33.5 33.5 33.5

C
u
rr

en
t

Pessimistic
Dynamic 2.56 50 1581 1 84 -66.4 -29.5 54.5 63.2 57.7 57.2

3.6

Flat 76 94 1205 0 35.8 -33.7 -0.4 35.4 25 25 25
Optimistic

Dynamic 84 76 1366 21 52.4 -53.4 -2.9 49.6 42.9 33.6 30.6
14.2

Flat 77 95 1204 0 32.5 -31 3 35.4 24.8 24.8 24.8U
n
co

n
st

ra
in

ed

F
u
tu

re

Pessimistic
Dynamic 81 88 1272 33 40.1 -52.3 3.7 43.8 44.1 29.9 26.6

8.4

Notes: Like table 3, except the the overall demand elasticity (θ) equals 0.5 instead of 0.1
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Table 8: Supplementary Results: Surplus changes if overall demand elasticity = 0.9

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Policy
Objec-

tive

Cost Demand
Flexibil-

ity

Pricing % Re-
new-
able

Price
($/MWh)

Mean Q
(MWh/hr.)

SD of
Price

($/MWh)

∆ CS
(%.)

∆ EV
Cost
(%)

∆ PS
(%)

∆ TS
(%)

∆ CS
High-
flex
(%)

∆ CS
Midflex

(%)

∆ CS
Inflex
(%)

∆ TS
Dyn
(%)

Flat 2.43 86 1673 0 50.9 -22.1 10.6 61.6 32.8 32.8 32.8
Optimistic

Dynamic 2.22 78 1840 3 66.7 -46.6 5.1 71.8 39.6 39.5 39.5
10.2

Flat 2.43 86 1673 0 51 -22.2 10.7 61.7 32.7 32.7 32.7

C
u
rr

en
t

Pessimistic
Dynamic 2.28 66 1791 4 63.8 -56.2 6.8 70.6 49.9 37.8 36.1

8.9

Flat 3.34 127 1187 0 —————————— B a s e l i n e ——————————
Optimistic

Dynamic 3.37 128 1179 3 -0.4 -7 4.4 4 -0.7 -0.7 -0.7
4

Flat 3.34 127 1188 0 —————————— B a s e l i n e ——————————

F
os

si
l

F
u
tu

re

Pessimistic
Dynamic 3.24 112 1230 0 6.1 -18.8 -2.8 3.2 12.1 3.4 2.8

3.2

Flat 100 170 903 0 -44.4 35.1 -1.7 -46.1 -33.2 -33.2 -33.2
Optimistic

Dynamic 100 128 1155 45 -14.2 -16.2 3.7 -10.4 3.1 -18.3 -27
35.7

Flat 100 169 923 0 -40.1 28.3 -6.1 -46.3 -32.6 -32.6 -32.6

C
u
rr

en
t

Pessimistic
Dynamic 100 138 1032 65 -27.9 -15.9 5.1 -22.8 3.7 -19.8 -30.6

23.5

Flat 100 102 1440 0 30.4 -28 -25.4 5 19.6 19.6 19.6
Optimistic

Dynamic 100 82 1818 28 56.5 -52.7 -22.5 33.9 42.6 29.1 25.5
28.9

Flat 100 102 1440 0 30.5 -28.2 -25.5 5 19.4 19.4 19.410
0%

R
en

ew
ab

le

F
u
tu

re

Pessimistic
Dynamic 100 91 1641 34 46.7 -52.5 -22 24.7 43.2 29 25.3

19.7

Flat 2.44 87 1673 0 50.4 -22.6 11.2 61.6 32.4 32.4 32.4
Optimistic

Dynamic 7.49 75 1912 3 72.5 -49 -0.4 72.1 42.3 42.3 42.3
10.5

Flat 2.44 87 1673 0 50.4 -22.7 11.2 61.7 32.2 32.2 32.2

C
u
rr

en
t

Pessimistic
Dynamic 3.22 64 1803 3 64.3 -57.5 6.4 70.7 51.9 38.1 36.2

9

Flat 81 98 1493 0 35.4 -29.9 5.5 40.9 22.8 22.8 22.8
Optimistic

Dynamic 87 78 1834 20 59.5 -53.1 0.9 60.4 43.1 31.8 29 19.5

Flat 81 99 1491 0 36.3 -30.6 4.7 41 22.5 22.5 22.5U
n
co

n
st

ra
in

ed

F
u
tu

re

Pessimistic
Dynamic 85 90 1642 30 47.8 -53.5 4.2 52 43.9 29.4 26.3

11

Notes: Like table 3, except the the overall demand elasticity (θ) equals 0.9 instead of 0.1
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Table 9: Supplementary Results: Surplus changes if overall demand elasticity = 2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Policy
Objec-

tive

Cost Demand
Flexibil-

ity

Pricing % Re-
new-
able

Price
($/MWh)

Mean Q
(MWh/hr.)

SD of
Price

($/MWh)

∆ CS
(%.)

∆ EV
Cost
(%)

∆ PS
(%)

∆ TS
(%)

∆ CS
High-
flex
(%)

∆ CS
Midflex

(%)

∆ CS
Inflex
(%)

∆ TS
Dyn
(%)

Flat 1.78 110 2324 0 33.5 -2.4 48.6 82.2 14.9 14.9 14.9
Optimistic

Dynamic 1.64 104 2522 4 45.6 -21 47.5 93 19.4 19.1 19.1
10.8

Flat 1.78 110 2324 0 33.6 -10.2 48.4 82 15.1 15.1 15.1

C
u
rr

en
t

Pessimistic
Dynamic 1.65 92 2512 7 47.1 -39.6 44 91.1 30 19.5 18.1

9.1

Flat 2.42 128 1672 0 —————————— B a s e l i n e ——————————
Optimistic

Dynamic 2.33 126 1742 4 4.1 -3.2 1.4 5.5 2 1.8 1.8
5.5

Flat 2.42 129 1673 0 —————————— B a s e l i n e ——————————

F
os

si
l

F
u
tu

re

Pessimistic
Dynamic 2.30 115 1772 5 6.5 -21.6 -1.8 4.7 11.5 2.9 2.1

4.7

Flat 100 168 967 0 -50 38.3 -3.4 -53.3 -30.6 -30.6 -30.6
Optimistic

Dynamic 100 126 1471 30 -17.4 -10.4 7.2 -10.2 4.5 -18.2 -26.6
43.1

Flat 100 171 945 0 -53 36.7 -0.1 -53.1 -32.6 -32.6 -32.6

C
u
rr

en
t

Pessimistic
Dynamic 100 138 1156 50 -34.5 -17.8 9 -25.5 5.5 -19.9 -29.1

27.6

Flat 100 117 2043 0 20.8 -9.6 -2.1 18.7 9 9 9
Optimistic

Dynamic 100 100 2659 25 45.3 -32 20.3 65.6 27.1 13.6 10.5
46.9

Flat 100 117 2043 0 20.9 -17.4 -2.3 18.6 9.3 9.3 9.310
0%

R
en

ew
ab

le

F
u
tu

re

Pessimistic
Dynamic 100 104 2515 30 43.6 -43.5 7.1 50.7 33 18.7 15.6

32.1

Flat 9.28 107 2382 0 37.7 -4.6 45.7 83.5 17.1 17.1 17.1
Optimistic

Dynamic 23.42 105 2503 6 44.4 -18.9 55.8 100.1 18.5 18.3 18.3
16.6

Flat 9.28 107 2382 0 37.9 -12.5 45.4 83.3 17.2 17.2 17.2

C
u
rr

en
t

Pessimistic
Dynamic 13.47 88 2546 4 46.7 -40 49.1 95.8 32.5 19.8 17.8

12.5

Flat 80 103 2563 0 47.4 -19.4 14.6 62 19.9 19.9 19.9
Optimistic

Dynamic 89 97 2820 21 53 -34 42.2 95.2 29.4 16.9 14.1
33.2

Flat 80 104 2563 0 47.9 -27.3 13.9 61.8 19.7 19.7 19.7U
n
co

n
st

ra
in

ed

F
u
tu

re

Pessimistic
Dynamic 90 101 2638 28 49.8 -46.1 29.7 79.5 35.3 20.8 17.9

17.7

Notes: Like table 3, except the the overall demand elasticity (θ) equals 2 instead of 0.1
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