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Abstract

Agents are endowed with time that is invested in different projects that generate profit
depending on the allocation of time by the agents. A mechanism divides the profit generated
by the projects among agents depending on the allocation of time as well as the amount of
profit that every project generates.

We study mechanisms that incentivize agents to contribute their time to the level that gen-
erates the maximal aggregate profit at the Nash equilibrium regardless of the production func-
tions (efficiency). Our main result is the characterization of all the mechanisms that satisfy
efficiency. Furthermore, within this class, a narrow class of mechanisms are monotone in the
payoffs of the agents with respect to the addition of agents, time or projects.
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1 Introduction

Profit sharing mechanisms are widely used by companies in order to increase profits. Such
mechanisms include direct cash bonuses that are awarded based on their performance, either
individually or collectively. Stock options, where employees get a share of the company, and
thus are rewarded based on the aggregate profit of the company is a popular mechanism in this
class. Although several studies address the effectiveness of profit sharing mechanisms to increase
the productivity of a company, empirically and theoretically,1 little has been said theoretically
about the direct relationship between profitability of the company and the rewards to employees.
Our paper is the first study in this area, characterizing a large class of mechanisms that align the
benefits of the company with the payments of their employees.

We consider a model where agents decide how to allocate their fix endowment of time to
different projects that generate profits. Every project could have different production functions
that generate profit depending on the agents’ time allocation. We focus on the case of asymmetric
information, where a planner (such as the owner of the company or manager) does not know the
production functions while the employees have perfect information and must assign the payments
depending only on the final profit generated by each project and the time allocation of the agents
to the different projects.2 An application of this problem is the division of the end of year surplus
in large companies.

The central issue is that although the planner tries to maximize the total profit of the company,
he might not know the production functions. Therefore, the planner’s goal is to find a mecha-
nism that implements the time allocation which generates the maximum total profit at the Nash
equilibrium for any set of production functions. We call this property efficiency. 3

For instance, consider the proportional sharing mechanisms that divides the total profit of each
project among the agents in proportion to their time allocation to such projects. This mechanism
is not necessarily efficient because agents could have the incentive to put more time in the projects
that gives them a larger proportion of time in order to get a larger share of the profits of such
projects, whereas the company might produce a larger share when agents invest their time col-
lectively into a single project. To see this, consider the following example. There are three agents
named 1, 2 and 3 and three projects {12, 13, 123} that generate profit. Each agent is endowed
with 1 unit of time. The production functions of such projects are α(t12

1 + t12
2 ) for the project 12,

βmin(t13
1 , t

13
3 ) for the project 13 and γmin(t123

1 , t123
2 , t123

3 ) for the project 123. When α = 2.5, β = 3
and γ = 6, the efficient time allocation ((t12

1 , t
13
1 , t

123
1 ), (t12

2 , t
123
2 ), (t13

3 , t
123
3 )) = ((0, 0, 1), (0, 1), (0, 1))

requires all agents to invest their time into the project 123 and generates a profit equal to 6 units.
Under proportional sharing, each agent receives 2 units of the profit each. However, this is not an
equilibrium since either agent 1 or 2 have the incentive to allocate all resources to the project 12,
where they can receive 2.5 units of profit instead of 2.

1Empirical studies of profit sharing in companies include Kruse (1992), Bhargava (1994) and Kraft and Ugarković
(2006), while Weitzman and Kruse (1990) and Prendergast (1999) provide surveys of profit sharing in companies. In
particular, the stock options mechanisms is widely spread in silicon valley start-ups and has created several millionaire
employees, for instance at Google, Facebook and Yahoo.

2This asymmetric information is natural in large companies, where the owner (board) of the company sets general
profit-sharing policies for employees before the production functions are realized.

3Our study considers the case of information asymmetry between the agents and the planner. In particular, we
assume that agents have perfect information about the production functions and use this information to make the
allocation of their time. On the other hand, the planner does not observe the production function but instead observes
the total profit generated by every individual project as well as the individual time contributions of the agents to the
different projects. Thus, even though the planner has a disadvantage in the information with respect to the agents, this
notion of efficiency leads to the first best outcome of the planner, as if the planner had full information.
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On the other hand, consider the average profit mechanism, where each agent gets a fixed
share of the total profit generated by the company.4 This mechanism is efficient because if an agent
deviates from the equilibrium that generates the maximum total profit (efficient equilibrium), then
the total profit of the company will not increase and neither does his payment.

Alternatively, consider the Shapley mechanism, where the profit of every project is distributed
equally among the agents who belong to each project irrespective of their time allocation. When
the set of feasible projects have the same size, for instance if all the projects have size 2, the Shapley
mechanism is also efficient. This is because if an agent deviates from the efficient equilibrium, then
the total profit of the company will not increase. Thus, since the profit of the company is just the
sum of the profit of each project, the total profit of the projects in which this agent belong to will
not increase, and neither does his payment. However, in general the Shapley mechanism is not
efficient when the projects have different size.5

More generally, consider a mechanism where the payoff of an agent only depends positively
on the total (aggregate) profit generated by the projects in which the agent belongs, as well as the
time contributions and profit generated by the projects in which the agent does not belong. We
call these mechanisms separable. Those mechanisms are efficient because if an agent decides to
change his time allocation, then his payoff can only influence the total output of his projects. If the
total output of his projects decreases, so does the total profit generated by the company; thus, the
agent is worse off. The average profit and Shapley mechanisms are particular cases of separable
mechanisms.

Our main result is the characterization of all the mechanisms that satisfy efficiency. The class
of efficient mechanisms coincide exactly with the class of separable mechanisms (Theorem 1).
We also look at the monotonicity of the payments of the agents with respect to the addition of
agents, projects or time. Corollary 2 shows that a very narrow class of efficient mechanisms that
depend only on the aggregate value of the profit generated by the company (such as the average
profit mechanisms) are robust to meet such monotonicity properties. Furthermore, this narrow
class of mechanisms are the only mechanisms where the efficient equilibrium is a strong Nash
equilibrium, where agents cannot gain by jointly coordinating their time allocation to the different
projects.

The rest of the paper is as follows: Section 1.1 surveys the relevant literature. Section 2 de-
scribes the model and the main result of the paper. In Section 3, we provide comparative statics
and group manipulations to our model. Finally, we conclude in Section 4.

1.1 Related Literature

The concept of implementation of the efficient allocation in a Nash equilibrium has been ex-
plored widely in the literature. Maskin and Sjöström (2002) survey full implementation of efficient
outcomes in different production functions. However, the literature of implementation in very
general economies has typically lead to impossibilities. We contrast with this literature by finding
a specific economy where several mechanisms can implement the efficient allocation.

We focus on the case where agents need to contribute their full time allocation and the entire
profit is allocated to the agents, therefore the traditional issues of moral hazards are ruled out
(e.g., Holmstrom, 1982). This restriction is similar to allocation mechanisms for a fixed divisible

4This mechanism can be interpreted as the stock awarding mechanism, in which agents are given a fix share of stocks
in the company, and thus their final allocation of profit depends on the aggregate profit generated by the company.

5This can be seen in the example above, where projects of size 2 and size 3 exists. Herein, agents 1 and 2 have the
incentive to deviate from the efficient equilibrium.
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resource (such as a dollar) depending on the report of the agents (e.g., de Clippel, Moulin and
Tideman, 2008 and Tideman and Plassmann, 2008).

A closely related work studies cost sharing allocation mechanisms that implement the cost
minimizing network. For instance, Juarez and Kumar (2013) focus on implementing the efficient
allocation in connection network, where agents should be provided with incentive to select the
cost minimizing network. This equilibrium should Pareto dominate all the other equilibriums.
Furthermore, the class of mechanisms characterized in Juarez and Kumar (2013) are closely related
to the mechanisms characterized in Proposition 2. Other closely related work, Hougaard and
Tvede (2012, 2015) characterize truthfully implementing cost minimizing networks by changing
the announcement rule. Their main results also lead to characterizing rules related to Proposition
2. In contrast with this literature, the bilateral setting allows us to implement a larger class of rules
that have not been explored in the implementation literature.

Our work is the first to introduce the implementation of the efficient time allocation for any set
of production functions.

2 The Model

Let N = {1, 2, . . . , n} be the set of agents in an economy. Groups of agents from N can col-
laborate in projects that generate profit depending on the time allocation of the agents on each
project.6 Formally, let L ⊂ 2N \ {∅} be the set of different projects. For instance, if L contains all
subsets of 2 agents, then every group of two agents can collaborate in a project. If L = 2N \ {∅}
then any potential coalition can collaborate in a project. Let Li be the set of groups from L that
contains agent i and L−i be the set of groups from L that do not contain agent i.

For a given setA and T ≥ 0, let ∆(T,A) = {x ∈ RA+|
∑

i∈A xi = T} be the T -simplex over the set
A. Every agent i is endowed with Ti units of time which he can split among the projects in which
he belongs to. The set of time allocations of agent i is the set Di = ∆(Ti, Li). Let D = Πi∈NDi

be the set of all time allocations for all agents. For a given time allocation t ∈ D, the amount tKi
is interpreted as the amount of time that agent i spends in project K. For this section, we fix the
group of agents N , group of projects L and time endowments T1, T2, . . . , Tn. Section 3 will look at
the possibility of changes with respect in N , L and T1, T2, . . . , Tn.

Every project generates profit. Let F = RL+ be the vector of profits for all projects. For a given
F ∈ F, the amount FK is the profit generated by project K ∈ L.

Definition 1 (Mechanisms). Fix N , L and T1, T2, . . . , Tn. A mechanism is a continuous function
ϕ : D× F→ Rn+ such that

n∑
i=1

ϕi (t, F ) =
∑
K∈L

FK .

The inputs on a mechanism are the different time allocations and profits of every project. The
output is a full distribution of the total profit to the agents.

Example 1. A. Average profit mechanism: the final profit of the entire economy is divided equally
among all members. That is, for any i ∈ N ,

ϕi(t, F ) =
1

n

∑
K∈L

FK

6For simplicity, we assume that there is no repetition in the projects, although a similar argument can be made when
projects repeat.
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B. Shapley mechanism: the final profit produced by the project K ∈ L is shared equally among the
agents in K. The total share of every agent is the sum of his shares in the projects. That is, for any
i ∈ N ,

ϕi(t, F ) =
∑
K∈Li

FK

|K|
,

where |K| is the number of agents in the project K.

C. Proportional sharing mechanism: the final profit produced by the projectK is shared in proportion
to the contribution of time of the agents in K. That is, for any i ∈ N ,

ϕi(t, F ) =
∑
K∈Li

PrKi (tK)FK , where PrKi (tK) =

{
tKi∑

j∈K tKj
if

∑
j∈K t

K
j > 0

0 if
∑

j∈K t
K
j = 0

D. Generalized Shapley Mechanism: The share of every agent is a fixed proportion of the profit gen-
erated by the projects in which he belongs and the unallocated profit of the projects in which the agent
does not belong. Formally, consider any collection of projects L ⊂ 2N \{∅, N} and positive individual
shares γ1, γ2 . . . , γn such that for any project K ∈ L, the aggregate shares in this project does not
exceed 1,

∑
j∈K γj ≤ 1. For any individual agent i,

ϕi(t, F ) = γi
∑
K∈Li

FK +
∑

M∈L−i

γi∑
l∈N\M γl

(1−
∑
j∈M

γj)F
M .

Notice that the average profit, Shapley and generalized Shapley mechanisms are independent
of time allocation. On the other hand, the proportional sharing mechanism is dependent on the
time allocation. Any convex combination of mechanisms is also a mechanism.

2.1 Efficiency and other desirable properties

The strategy of agent i is an allocation of his time resource between different projects to which
he belongs. Let f = (fK)K∈L be the vector of production functions, where fK : Rk+ → R+ is
a continuous and non-decreasing function on both coordinates. Let F be the set of vectors of
production function.

We study the perfect information non-cooperative game where the strategy of agent i is a
function from F to Di that assigns to every set of production functions a time allocation for each
project. Let Si be the set of functions from F to Di. The payoff of an agent depends on its own and
others’ time allocation, production functions and the outcome given by the mechanism.

Definition 2 (Non-cooperative GameGϕ). Given a mechanism ϕ, we study the non-cooperative game
Gϕ = [N, (S1, . . . ,Sn), (π1, . . . , πn)] where

- the strategy space of agent i is Si

- the payoff function of agent i at the vector of strategies (Si, S−i) and production function vector
f ∈ F is

πϕi (Si, S−i, f, ϕ) = ϕi

(
(ti, t−i),

[
fK(tK)

]
K∈L

)
, where tj = Sj(f) ∀j ∈ N
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We are interested in Nash equilibrium strategies, where agents have no incentive to deviate,
assuming the strategies of the other agents remain fixed. Under a vector of production functions,
a set of strategies generates outputs for the different projects. An efficient strategy dominates any
other strategy for any set of production functions. We say that a mechanism is efficiency if an
efficient strategy can be supported as a Nash equilibrium.

Definition 3 (Nash Equilibrium and Efficiency). • A strategy profile (S∗1 , S
∗
2 , . . . , S

∗
n) is a Nash

equilibrium of the game Gϕ if for any production function vector f ∈ F ,

πϕi (S∗i , S
∗
−i, f) ≥ πi(Si, S∗−i, f, ϕ), ∀Si ∈ Si

• A set of strategies (S1, S2, . . . , Sn) is efficient if for any f and for any other strategy S̃∑
K∈L

fK(tK ≥
∑
K∈L

fK(t̃K), where ti = Si(f) and t̃i = S̃i(f)

• A mechanism is efficient if a set of efficient strategies is a Nash equilibrium.

As discussed in the introduction, the average profit mechanism is efficient. The Shapley and
the generalized Shapley mechanisms are efficient for some projects L.

2.2 Separable mechanism and the main result: implementing the efficient time allo-
cation

In this section, we characterize the mechanisms that are efficient. There are several restrictions
that efficiency imposes on a mechanism. The first restriction is that the payoff of an agent should
depend on the aggregate profit generated by the projects in which he belongs, instead of the profits
of individual projects. The second restriction is that the time allocation of an agent should not
influence his payoff (but it might influence the payoff of other agents). The separable mechanisms
discussed below include these two restrictions.

Definition 4. A mechanism ϕ is separable if there exist functions (g1, g2, . . . , gn) which are non-
decreasing in the first coordinate such that

ϕi(t, F ) = gi

∑
K∈Li

FK ,×B∈L−i(t
B, FB)

 ∀i

A mechanism is separable if the payoff of agent i only depends on the total aggregated profit
generated by his projects,

∑
K∈Li

FK , as well as the profits and time allocations that do not contain
agent i, ×B∈L−i(t

B, FB). The class of separable mechanisms is large. We provide below some
examples. Corollary 1 provides the entire class of separable mechanisms under two additional
assumptions.

Example 2. A. The average profit mechanism is a separable mechanism generated by the functions

gAPi

∑
k∈Li

FK ,×B∈L−i(t
B, FB)

 =

∑
H∈L F

H

n
∀i
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B. Assume that the grand coalition is not feasible, that is N 6∈ L. Consider the mechanism ϕ∗i (t, F ) =∑
B∈L−i

FB

|N\B| , for any i ∈ N , where every agent gets paid the average profit of the projects in which
he does not belong. The mechanism is separable and generated by the functions,

g∗i

∑
K∈Li

FK ,×B∈L−i(t
B, FB)

 =
∑

B∈L−i

FB

|N \ L−i|
∀i

C. Shapley is a separable mechanisms only when the set L contains coalitions of the same size c. In this
case,

gShi

∑
K∈Li

FK ,×B∈L−i(t
B, FB)

 =
1

c

∑
K∈Li

FK ∀i

D. The generalized Shapley mechanism is a separable mechanism generated by the functions

gGShi

∑
K∈Li

FK ,×B∈L−i(t
B, FB)

 = γi
∑
K∈Li

FK +
∑

M∈L−i

γi∑
l∈N\M γl

(1−
∑
j∈M

γj)F
M ∀i

Note that the convex combination of separable mechanisms is also a separable mechanism
generated by the convex combination of the g functions. The proportional sharing mechanism
is not separable, because the payoff of an agent depends on his allocation of time to different
projects.

Theorem 1. A mechanism is efficient if and only if it is separable.

The proof is in Appendix A.
We say that a mechanism is anonymous if it is independent of the name of the agents. This

means that agent i could be replaced with agent j, but the allocations and outputs are the same. We
say that a mechanism is time-independent if the mechanism only depends on the profit generated
by the different projects and not on the time allocated to different projects. The class of efficient
and symmetric mechanism is large. We characterize below the class of efficient, symmetric and
time-independent mechanisms.

Corollary 1. • Consider an integer c such that 0 < c < n and let Lc = {S ⊂ N | |S| = c} be the set
of projects that are of the same size c. A mechanism is efficient, anonymous and time-independent in
Lc if and only if it is a convex combination of Shapley and ϕ∗.

• Consider LT = ∪c∈TLc for some T ⊆ {1 . . . , n − 1}. A mechanism ϕ is efficient, anonymous and
time-independent in Lc if and only if ϕ is a generalized Shapley mechanism with the same weight
for every agent. That is, there exists 0 ≤ α ≤ minl∈L

1
|l| such that ϕi(Fi, F−i) = α

∑
S⊂Li

FS +∑
T⊂L−i

1−|T |α
n−|T | F

T .

• Consider L such that N ∈ L. A mechanism is symmetric, efficient and time independent if and only
if it is the average profit mechanism.

The implications of this corollary are that whenever agents are substitutes and the grand coali-
tion is not a feasible project, no mechanisms is anonymous and time independent. On the other
hand, when the grand coalition is feasible, only the average profit mechanisms meet these prop-
erties.
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3 Monotonicity and group manipulations

Until now, we have fixed the number of agent N = {1, . . . , n}, the time allocations T =
(T1, . . . , Tn) and the set of projects L. For each problem [N,T, L], the previous section find the
class of efficient mechanisms. In this section, we focus on the robustness of such efficient mecha-
nisms with respect to changes in N, L and T . In particular, we focus on the monotonicity of the
allocation given a mechanisms with respect to the increase in N , T and L.

Given the problem [N,T, L], we denote by Effϕ[N,T, L] the set of efficient Nash equilibria
under ϕ.

Definition 5 (Time-monotonicity). A efficient mechanism ϕ is time-monotonic at [N,T, L] if for any
agent i, time T̃i > Ti and any efficient equilibrium S∗ ∈ Effϕ[N,T, L], there exists an efficient equilib-
rium S̃ ∈ Effϕ[N, (T̃i, T−i), L] such that ϕ(S∗(f), f(S∗(f)) ≤ ϕ(S̃(f), f(S̃(f)).

A particular case of time-monotonicity occurs when looking at time monotonicity in the prob-
lem [N,T, L] with Ti = 0 and T̃i > 0. We can interpret this case as agent-monotonicity of the
mechanism, where agent should not be worse-off when new agents join the game.

We say that the vector of production functions f̃ is a technological improvement of f if for
any project K ∈ L and time allocation tK we have that f̃K(tK) ≥ fK(tK).

The next property requires that technological improvements should not harm any agent, re-
gardless of whether or not they are participating in the project(s) that improved.7

Definition 6 (Technology-monotonicity). An efficient mechanismϕ is technology-monotonic at [N,T, L]
if for any efficient equilibrium S∗ ∈ Effϕ[N,T, L], any production functions f and any technological im-
provement f̃ of f , ϕ(S∗(f), f(S∗(f)) ≤ ϕ(S∗(f̃), f(S∗(f̃)).

A particular case of technology-monotonicity occurs for a technological improvement from
the zero-technology, fK(tK) = 0 for all tK , to a non-zero technology f̃K(tK) > 0 for some t̃K . In
this case, we can interpret this as project-monotonicity, where agents should not get worse-off as
more projects are available.

The following property rules out the coordination of time by the agents at an equilibrium. This
is capture by using a traditional notion of strong Nash equilibrium.

Definition 7 (Strong Nash equilibrium). We say that the Nash equilibrium (S∗1 , . . . , S
∗
n) of the game

Gϕ is a strong Nash equilibrium if for any group of agents T ⊂ N and strategies S̃T of them, if there
exists a production function f such that ϕi(S∗(f), f(S∗(f)) < ϕi(S̃(f), f(S̃(f)) for some i ∈ T , then
there exists j ∈ T such that ϕi(S∗(f), f(S∗(f)) > ϕi(S̃(f), f(S̃(f)), where S̃ = (ST , S

∗
−T ).

Corollary 2. The following three properties are equivalent for the efficient mechanism ϕ:

(i) ϕ is time-monotonic

(ii) ϕ is technology-monotonic

(iii) there exists an efficient Nash equilibrium in the game Gϕ that is a strong Nash equilibrium

(iv) there exists non-decreasing functions: gi : R+ → R+ for i = 1, 2, . . . , n such that∑
i

gi(A) = A ∀A ∈ R+

7Thomson (2007) defines a very similar concept, which is called “strict resource monotonicity” in allocation prob-
lems.
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and

ϕ(t, F ) =

(
g1

(∑
H∈L

FH

)
, g2

(∑
H∈L

FH

)
, . . . , gn

(∑
H∈L

FH

))
∀t and F.

The proof of this Corollary is in Appendix A. Note that the average profit mechanism is the
only anonymous mechanisms in this class.

4 Conclusion

We have introduced a large class of mechanisms that implement the efficient time allocation.
Our main result shows that the class of efficient mechanisms coincide with the class of separable
mechanisms, where the payoff of an agent only depends on the total profit generated by his own
projects, as well as the time allocations and profits generated by by projects in which the agent
does not belong to. This large class of efficient mechanisms is shrunk substantially when more
robust monotonicity properties (on time and technology) are imposed. This is also true, when
focusing on mechanisms that prevent agent to coordinate their time.

More work needs to be done to understand the sharing of profits in dynamics problems.
Juarez, Ko and Xue (2016) have started such study by focusing in the axiomatic division of finite
and sequential benefits in companies.

Appendix A. Proofs

Proof of Theorem 1

Proof. First, we show that if a mechanism is separable, then the mechanism is efficient.
Suppose that an agent, say agent i, deviates from an efficient strategy under a separable mech-

anism. Then, the deviation by agent i does not lead to an increase in total profit of his projects in
any production functions due to the definition of efficient strategy. Thus, agent i cannot increase
his payoff because gi is a non-decreasing function in the first coordinate. This is a contradiction.

Next, we show that if a mechanism is efficient, then the mechanism is separable for any set of
production functions.

Step 1: We show that if a mechanism is efficient, then the payoff of agent i does not depend on
his time allocation. That is,

ϕi (ti, t−i, F ) = hi (t−i, F ) ,

where ti is the strategy of agent i and t−i = (t1, t2, . . . , ti−1, ti+1, . . . , tn) is the collection of all
agents’ strategies but agent i.

First, consider k̄ ∈ Li and define the production functions as follows:

fk(t) = ck + ε

∑
j∈k

tkj

 , for k 6= k̄;

f k̄(t) = ck̄ + ε

2tk̄2 +
∑

j∈k̄\{i}

tk̄j

 ;

where ck ∈ R+ is a constant for each k ∈ L.
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By definition of efficient strategy, agent i allocates his full resource to the project k̄. That is,
ti = Ek̄i ∈ Di, where Ek̄i,k = 1 if k = k̄, and Ek̄i,k = 0 if k ∈ Li \ {k̄}.

Then, for all t̃i ∈ Di we have that

ϕi

(
Ek̄i , t−i, f(k̄i , t−i)

)
≥ ϕi

(
t̃i, t−i, f(t̃i, t−i)

)
.

Let c = [ck]k∈L. As ε goes to 0, f(t)→ c. Therefore, by continuity of ϕ we have that

ϕi

(
Ek̄i , t−i, c

)
≥ ϕi(t̃i, t−i, c), for any t̃i ∈ Di. (1)

Alternatively, fix t̃i ∈ Di and consider the production functions as follows:

f̃k(tk) = ck + ε
(

min{t̃ki , tki }+ tki

)
, for k ∈ Li;

f̃k(tk) = ck + ε

(∑
i∈k

tki

)
, for k ∈ L \ Li.

Notice that the optimal profile for agent i equals t̃i. Since ϕ is efficient, we have that

ϕi

(
t̃i, t−i, f̃

(
t̃i, t−i

))
≥ ϕi

(
Ek̄i , t−i, f̃

(
t̃i, t−i

))
.

As ε goes to 0, f(t)→ c. Therefore, by continuity of ϕ we have that

ϕi
(
t̃i, t−i, c

)
≥ ϕi

(
Ek̄i , t−i, c

)
. (2)

Hence, by the inequalities (1) and (2),

ϕi
(
t̃i, t−i, c

)
= ϕi

(
Ek̄i , t−i, c

)
.

Thus, the payoff of agent i is independent of his time allocation. Similarly, the payoffs of the
other agents are also independent of their own time allocation.

Step 2: We show that the share of agent i depends on the sum of the profits of the projects in
which he belongs.

First, consider k̄ ∈ Li and define the production functions as follows:

f k̄(t) = ck̄ + tk̄i + γ
∑
j∈k̄

tk̄j ;

fk(t) = ck + γ

∑
j∈k

tkj

 , for any k ∈ L \ {k̄}

where γ < 1. and ck ∈ R+ are arbitrary constants.
By efficiency, for all ti ∈ Di we have that

ϕi

(
Ek̄i , t−i, f

(
Ek̄i , t−i

))
≥ ϕi (ti, t−i, f (t̄i, t−i)) .

Therefore, as γ goes to 1,

f
(
Ek̄i , t−i

)
→

ck̄ + 1 +
∑
j∈k̄

tk̄j ,

ck +
∑

j∈k\{i}

tkj


k∈Li\k̄

,

ck +
∑
j∈k

tkj


k∈L\Li

 = F ∗,
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and

f (t̄i, t−i)→

ck +
∑
j∈k

tkj


k∈L

= G∗.

Thus, by the continuity of ϕi,

ϕi

(
Ek̄i , t−i, F

∗
)
≥ ϕi (ti, t−i, G

∗) .

Therefore, transferring all the time of i to the project k̄ does not decrease the share of agent i.
Alternatively, for a given ti =

(
t̃1i , t̃

2
i , . . . , t̃

n
i

)
, consider the following production functions,

f̃ k̄(t) = cT + min
{
t̃k̄i , t

k̄
i

}
+ γt1i + ti1;

f̃k(t) = ck + min
{
t̃ki , t

k
i

}
+

∑
j∈k\{i}

tkj , for any k 6∈ Li \ {k̄};

f̃jk(t) = ck +

∑
j∈k

tki

 where k ∈ L \ Li.

For γ < 1, the optimal profile requires ti =
(
t̃1i , t̃

2
i , . . . , t̃

n
i

)
. Comparing this with the subopti-

mal profile ti = (Ti, 0, . . . , 0), and making γ converge to zero, we have that:

ϕi

(
EC̄i , t−i, F

∗
)
≤ ϕi (ti, t−i, G

∗) .

Therefore, we have that the payoff of agent i is invariant to the reallocation of profits in the
projects that contain agent i.

Hence, by Steps 1 and 2, ϕi depends on the aggregate profit of the projects in which i belongs,
as well as others’ time allocations and profits only.

Step 3: We show that a mechanism is non-decreasing function on the total output of its own
projects.

Consider the following production functions:

f̃ k̄(t) = cT + (γ + δ)tk̄i + γ
∑

j∈k̄\{i}

tk̄j ;

f̃k(t) = ck + γ
∑
j∈k̄

tkj , for any k ∈ L \ {k̄}.

where γ < 1 and δ > 0.
Then, at the optimal profile, agent i contributes his full time allocation to the project k̄. There-

fore, for any arbitrary profile ti:

ϕi

∑
k∈Li

ck + (γ + δ)Ti + γ
∑
k∈Li

∑
j∈k\{i}

tk̄j , F−i, t−i

 ≥
∑
k∈Li

ck + (δ)tk̄i + γ
∑
k∈Li

∑
j∈k

tk̄j , F−i, t−i

 .

As γ goes to 0, we have that

ϕi

∑
k∈Li

ck + δTi, F−i, t−i

 ≥
∑
k∈Li

ck + δtk̄i , F−i, t−i

 .

Therefore, the step follows immediately since {ck}k∈Li
and t1i ≤ Ti are arbitrary numbers.
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Proof of Corollary 1

Proof. Consider the mechanism ϕ that is efficient, symmetric and time-independent.
First, note that by Theorem 1, symmetry and time independence, there exists a function g :

R2 → R such thatϕi can be written asϕi(F il, F ik, F lk) = g(F il+F ik, F lk) for any (F il, F ik, F lk)∈R3
+.

Second, we show that g is linear. That is, there exists constants α ≥ 0 and β ≥ 0 such that
g(A,B) = αA+ βB for any A,B ≥ 0.

To see this, note that by efficiency,

ϕ1 + ϕ2 + ϕ3 = g(F 12 + F 13, F 23) + g(F 21 + F 23, F 13) + g(F 31 + F 32, F 12) = F 12 + F 13 + F 23

for any F 12 ≥ 0, F 13 ≥ 0 and F 23 ≥ 0.
Consider the profile (F 12, F 13, F 23) ∈ R3

++ and some small ε > 0. Then,

g(F 12 + F 13, F 23) + g(F 21 + F 23, F 13) = g(F 12 + F 13 − ε, F 23 + ε) + g(F 21 + F 23 + ε, F 13 − ε).

Let A = F 12 + F 13, B = F 21 + F 23 and X = F 12 + F 13 + F 23. Then,

g(A,X −A) + g(B,X −B) = g(A− ε,X −A+ ε) + g(B + ε,X −B − ε).

When A = B, we have that G(A,X −A) = g(A−ε,X−A+ε)+g(A+ε,X−A−ε)
2 for any X ≥ A ≥ 0 and

any small ε > 0. This implies that g(A,X −A) = αA+ β(X −A) + γ for some constants α, β, and
γ. Since g(0, 0) + g(0, 0) + g(0, 0) = 0, then γ = 0. Furthermore, notice that g(A,X − A) ≥ 0, thus
α ≥ 0 and β ≥ 0.

On the other hand, consider the profile where F 12 = F 13 = F 23 = C ≥ 0. Then, 3g(2C,C) =
3(α2C + βC) = 3C. Therefore, β = 1− 2α. Since α ≥ 0 and β ≥ 0, we have that 1

2 ≥ α ≥ 0.
When α = 0 the mechanism ϕ generates ϕ∗. When α = 1

2 , the mechanism ϕ generates Sh.
Moreover, when α = β = 1

3 , the mechanism ϕ generates AC.

Proof of Corollary 2

Proof. Property (iv)⇒ Property (iii) is clear because under such a function g, every agent allocates
their time resources to achieve the maximum (efficient) level of the total profit in the society. In
other words, even if some agents form a coalition, they cannot increase their individual payoff
because the aggregate profit does not increase.
We prove that Property (iii)⇒ Property (iv).

Step A1: Show ϕi is independent of time allocations, ti and t−i.
By Theorem 1, ϕ is such that

ϕi(t, F ) = ϕi

∑
k∈Li

F k,
(
F b
)
b∈L−i

, t−i

 , ∀i.

Consider the time-independent production functions:

fk(tk) = αk, ∀k ∈ L and arbitrary constants αk,

Suppose that ϕi depends on t−i. Then, one agent, j, can help agent i to receive a higher payoff
by changing his time allocation, because the other allocations are constant. This is a violation to
the definition of strong efficiency. Therefore, we have

ϕi(t, F ) = ϕi

∑
K∈Li

FK ,
(
FB
)
B∈L−i

 , ∀i.
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Step A2: Show ϕi depends on
∑

b∈L−i
F b.

Consider the following production functions: fk(tKi , t
K
−i) = tKi for any K ∈ Li and fB(tB) =

αB for B ∈ L−i and some constants αB . We list all groups in L−i by (b1, b2, . . . , bn).
Then, the payoff of agent i equals:

ϕi(t, F ) = ϕi

∑
k∈Li

F k, F b1, F b2, F b3, · · · , F bn


= ϕi

∑
k∈Li

F k, F b1 + F b2, 0, F b3 · · · , F bn


= · · ·

= ϕi

∑
k∈Li

F k,
∑
b∈L−i

F b, 0, 0 · · · , 0

 ,

where at every step, the equality holds by strong efficiency.
Therefore, the payoff of agent i only depends on the sum of its own outputs and the other

pairs’ outputs. We can apply a similar argument to any other agent. Therefore, we have

ϕi

∑
k∈Li

F k,
(
F b
)
b∈L−i

 = ϕi

∑
k∈Li

F k,
∑
b∈L−i

F b

 , ∀i.

Step A3: Show ϕi depends on
∑

h∈L F
h.

Consider the following production function:fk(tki , t
k
−i) = tki +

∑
j 6=i t

k
j . By Theorem 1 and

strong efficiency, we have

ϕi

∑
K∈Li

FK ,
∑

B∈L−i

FB

 = ϕi

∑
k∈Li

F k + x,
∑
b∈L−i

F b − x


for any x <

∑
b∈L−i

F b. Therefore, we have

ϕi

∑
k∈Li

F k,
∑
b∈L−i

F b

 = ϕi

(∑
h∈L

F h, 0

)
= ϕi

(∑
h∈L

F h

)

Property (iv)⇒ Property (ii) is obvious.
We new show that Property (ii)⇒ Property (iv).
Step B1. ϕi is independent of time.
By Theorem 1, the payoff of agent i, depends only on the time allocations of others, the total

profit of the projects in which agent i belongs, and the profits of the projects in which agent i does
not belong. That is,

ϕi(t, F ) = ϕi

∑
k∈Li

F k,
∑
b∈L−i

F b, t−i

 , ∀i.

Now, we show ϕi is independent of the other’s time allocations t−i.
Consider the following constant production functions:

fk(tk) = αk, ∀k ∈ Li and arbitrary constants αb for every b ∈ L−i.

12



Note that under these production functions, any allocation of time is an efficient Nash equilib-
rium. Suppose that the technology in the project k has been improved.

f̃k(tk) = αk + ε.

Then, by strong monotonicity,

ϕi

∑
k∈Li

αk + ε,
∑
b∈L−i

αb; t̃−i

 ≥ ϕi
∑
k∈Li

αk,
∑
b∈L−i

αb; t−i

 , ∀i, t−i and t̃−i.

By taking the limit as ε tends to zero,

ϕi

∑
k∈Li

αk,
∑
b∈L−i

αb; t̃−i

 ≥ ϕi
∑
k∈Li

αk,
∑
b∈L−i

αb; t−i

 , ∀i, t−i and t̃−i.

By exchanging the roles of t−i and t̃−i we have that

ϕi

∑
k∈Li

αk + ε,
∑
b∈L−i

αb; t−i

 ≥ ϕi
∑
k∈Li

αk,
∑
b∈L−i

αb; t̃−i

 , ∀i, t−i and t̃−i.

Thus,

ϕi

∑
k∈Li

αk,
∑
b∈L−i

αb; t̃−i

 = ϕi

∑
k∈Li

αk,
∑
b∈L−i

αb; t−i

 , ∀i, t−i and t̃−i.

Step B2. In this step, we show that the payoff of an agent is invariant to transfers of profit from a
project in which he does not below to a project in which the agent belongs.

Consider two projects S and T such that S ∩ T 6 ∅ and neither S ⊂ T nor T ⊂ S. Without loss
of generality, assume that 1 ∈ T \ S, 2 ∈ S ∩ T and 3 ∈ S \ T . Furthermore, consider the following
set of production functions:

fT (tT ) =
∑
i∈T

tTi ;

fS(tS) =
∑
i∈S

tSi ;

fK(tK) = cK , ∀K 6= S, T

Note that under efficiency, agent 2 sends any distribution of his time to the projects S and T ,
while agents 1 and 3 invest their time in the projects T and S respectively.

Consider the following technology improvement of fT :

f̃T (tT ) = (1 + ε)tT2 +
∑

i∈T\{2}

tTi ;

fS(tS) =
∑
i∈S

tSi ;

fK(tK) = cK , ∀K 6= S, T

13



We look at the payoff of agent 3. Consider the case when agent 2 transfers the profit from
the projects in which agent 3 belongs, to the projects that agent 3 does not belong to. That is,
agent 2 transfers some amount t2 from project S to project T. Formally, by strong monotonicity
and efficiency an any t2 < T 2,

ϕ3(
∑
K∈L3

FK , (FK)K∈L−3) ≤ ϕ3(
∑
K∈L3

FK − t2, F T + (1 + ε)t2, (FK)K∈L−3\{T}).

At the limit, when ε tends to 0, we have that

ϕ3(
∑
K∈L3

FK , (FK)K∈L−3) ≤ ϕ3(
∑
K∈L3

FK − t2, F T + t2, (FK)K∈L−3\{T}).

Alternatively, consider the production functions.

f̃S(tT ) = (1 + ε)tS2 +
∑

i∈S\{2}

tSi ;

fS(tT ) =
∑
i∈T

tTi ;

fK(tK) = cK , ∀K 6= S, T

By repeating the above argument we have that

ϕ3(
∑
K∈L3

FK , (FK)K∈L−3) ≥ ϕ3(
∑
K∈L3

FK − (1 + ε)t2, F T + t2, (FK)K∈L−3\{T})

As ε tends to zero, this leads to

ϕ3(
∑
K∈L3

FK , (FK)K∈L−3) ≥ ϕ3(
∑
K∈L3

FK − t2, F T + t2, (FK)K∈L−3\{T})

Hence,

ϕ3(
∑
K∈L3

FK , (FK)K∈L−3) = ϕ3(
∑
K∈L3

FK − t2, F T + t2, (FK)K∈L−3\{T})

In particular, by repeating the argument for every project that does not contain 3, we have

ϕ3(
∑
K∈L3

FK , (FK)K∈L−3) = ϕ3(
∑
K∈L3

FK + F T , 0, (FK)K∈L−3\{T}) = ϕ3(
∑
K∈L

FK , (0)K∈L−3)
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