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Abstract

We consider a frictional market where an element of the terms of trade (price or quantity)
is posted ex-ante (before the matching process) while the other is determined ex-post. By
doing so, sellers can then exploit their local monopoly power by adjusting prices or quantities
once the local demand is realized. We find that when sellers can adjust quantities ex-post,
there exists a unique symmetric equilibrium where an increase in the buyer-seller ratio leads
to higher quantities and prices. When buyers instead can choose quantity ex-post, higher
buyer-seller ratio leads to higher price but lower quantity. These equilibrium allocations are
generically not constrained effi cient, in terms of both intensive and extensive margins. When
sellers post ex-ante quantities and adjust prices ex-post, a symmetric equilibrium exists where
buyers obtain no surplus. The equilibrium allocation is also constrained ineffi cient. If buyers
choose prices ex-post, there is no equilibrium when entry is costly. This paper highlights
how sellers’ability to commit ex-ante to certain elements of the terms of trade is crucial in
generating constrained effi cient allocations.
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1 Introduction

Search and matching models have been developed and extensively applied in the context of labor

economics. In these settings the matching technology tries to capture the inherent market frictions

(see Pissarides (2000), Rogerson et al. (2005)). Search is typically assumed to be two-sided so that

firms search for workers and unemployed search for jobs.1 This kind of search framework has also

been applied to goods/services markets as well as monetary economics.2 Regardless of the market

at hand, the typical assumption in these environments is that the terms of trade are determined

ex-post via a bargaining procedure (generalized Nash, Kalai, or Rubinstein). Recently, however,

a large and growing literature, both in labor and monetary economics, has explored the allocative

properties of allowing one side of the market to ex-ante post and commit to the terms of trade. This

can be achieved by setting a wage (price) or more general trading mechanisms. The competitive

search framework captures such departures.3 The key assumptions in such environments are that:

(i) sellers are able to fully commit to all posted terms of trade, (ii) buyers are able to observe all

terms of trade posted by all sellers, (iii) none of the agents posting the terms of trade is capable

of serving the entire market, and (iv) typically goods are indivisible.4

In this paper we explore the role of ex-ante commitment to some elements of the terms of

trade in determining the resulting equilibrium prices and quantities. So far in the literature, the

only possibility for sellers to exploit ex-post opportunities (after the match has taken place) has

been to post auctions, thus allowing for multilateral meetings. For instance, Peters and Severinov

(1997), Julien et al. (2000), and Albrecht et al. (2014) explore the consequences of posting only

reserve prices. Within this spirit, Kim and Kircher (2015) analyze the implications of first-price

and second-price auctions, and show that the choice of the trading mechanism is crucial for the

existence of equilibrium. Here we explore an alternative procedure allowing sellers or buyers to

exploit ex-post opportunities. To do so, we consider a competitive search model where sellers

are able to produce any continuous quantity at a convex cost while serving only one buyer at a

1This is essentially the Diamond-Mortensen-Pissarides framework.
2See Nosal and Rocheteau (2011) and Lagos et al. (2016) for an extensive survey.
3See McAfee (1993), Shimer (1996), Moen (1997), Acemoglu and Shimer (1999), Peters (2000), Julien et al.

(2000), Burdett et al. (2001), Mortensen and Wright (2002), and Rocheteau and Wright (2005), to name a few.
4There exists a literature relaxing some of the key assumptions. Doyle and Wong (2013) consider the case of

imperfect commitment, thus departing from assumption (i) above. In Geromichalos (2012) a seller could choose to
serve the whole market (if all the buyers show up at her store), and hence, in a special case of that paper assumption
(ii) might be violated. Gomis-Porqueras et al. (2017) relax assumption (ii) and allow for costly probabilistic signals.
Also, there are many exceptions to an often extreme assumption that only one buyer gets served, including Lester
(2010) and Geromichalos (2012, 2014). Faig and Jerez (2005) consider divisible goods.
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time. In contrast to the previous literature, sellers have the ability to commit ex-ante only part

of the terms of trade (prices or quantities), while choosing the remaining one ex-post or letting

buyers choose. This is what we refer to as ex-post opportunism: sellers’or buyers’ability to take

advantage of opportunities by choosing one component of the terms of trade after the meeting

process has been revealed. In particular, we consider sellers posting and committing to a per unit

price ex-ante, but choosing the quantity/quality ex-post, after the matching process has taken

place. Then, we change the choice of quantity ex-post to buyers. Many markets have this ex-

ante limited commitment feature. This is especially relevant if one considers the quality margin

interpretation of the model. Such type of arrangements are found in labor markets, where wage

rates are posted but hours worked are left to be determined ex-post, as in part-time jobs. This

situation can also be observed in other markets. For instance, apartments or houses sold before

construction or new cars priced and ordered/sold before they are manufactured. Examples of

buyers choosing quantity to consume ex-post after observing posted prices are pervasive.5

Under these terms of trade with ex-post opportunism, we show that marginal cost pricing is the

unique symmetric equilibrium as in the standard perfectly competitive market when sellers choose

quantity ex-post. We show that this equilibrium can lead to under, over, or effi cient production.

These different possibilities critically depend on the aggregate buyer-seller ratio. Typically, entry

is ineffi cient for small or large entry cost. For small cost, there is excessive entry and under-

production relative to the effi cient quantity (vice versa for large entry cost). This is in sharp

contrast to the standard competitive search equilibrium where sellers ex-ante post and commit to

both price and quantity. In such an environment, the equilibrium is always constrained effi cient

both at the extensive and intensive margins.6

We also find that posting prices ex-ante by sellers with quantities determined ex-post by buyers

always yields marginal utility pricing.7 The equilibrium is generically not constrained effi cient both

at the intensive and the extensive margins. Interestingly, the direction of quantity ineffi ciency is

the inverse of when sellers choose quantity ex-post. For low cost of entry, we find excessive entry,

but over-production relative to the effi cient quantity (vice versa for large entry cost).

Finally, we consider the possibility that sellers post and commit to quantities ex-ante, but

5This type of limited ex-ante commitment can apply to any market where goods or services are priced ex-ante
but produced upon a match.

6This result holds without fiat money. Rocheteau and Wright (2005) show that under-production can occur
with money being essential for trade and high inflation.

7The environment with buyers choosing quantity ex-post is related to that analyzed in Peters (1984).
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determine the per unit price ex-post, unilaterally by sellers or buyers, respectively. Under this

trading protocol, we show that competitive search equilibrium exists. In the case of sellers setting

prices ex-post, they have the incentive to extract all of the buyers’surplus by choosing a unit price

equivalent to Diamond (1971), that is, the equilibrium price is above marginal cost. In addition,

we find that the effi cient quantity is always traded, but entry is excessive relative to what the social

planer would choose. When buyers set prices ex-post, they extract all the surplus from sellers. The

equilibrium price equals average cost and sellers choose not to participate in the DM when entry

is costly. All of our results hold for a wide range of utility and cost functions.

The paper is organized as follows. Section 2 reviews the competitive search literature with

divisible goods. In Section 3 we provide the environment, while in Section 3.1 we consider the

planner’s allocation. In Section 3.2 we characterize the symmetric equilibria where sellers commit

to both per unit prices and quantity. In Section 3.3, we consider the case where sellers ex-ante

commit to per unit prices and quantity is chosen ex-post by sellers, and Section 3.4 studies equilibria

where buyers choose quantity ex-post. In Section 3.5 we analyze the equilibrium where sellers

commit to quantity, but the per unit price is chosen ex-post by sellers, while in Section 3.6, the

ex-post price is chosen by buyers instead. A conclusion follows and all proofs are in Appendix.

2 Relevant Literature

This paper relates to two different strands of literature. One that explores the equilibrium con-

sequences for quantities and prices of having various trading mechanisms. The other studies how

the equilibrium changes once the assumption of full commitment by sellers is relaxed.

The paper most closely to ours is that of Peters (1984), who considers a large directed search

market where sellers produce a continuous quantity, q, while facing a convex cost and an exogenous

capacity, K. Sellers post unit prices, and upon a match, buyers choose the quantity to demand,

which is the minimum of q and K. In equilibrium, sellers post a price equal to average cost.

Here we differ in that the quantity choice is determined ex-post, rather than on demand as in

Peters (1984). As a result, the equilibrium explored in this paper is consistent with marginal

cost pricing, while Peters (1984) finds average cost pricing. In addition, we find over, under, or

effi cient production is possible, depending on the buyer-seller ratio, while in Peters (1984), there

is always over production. Faig and Jerez (2005) also have a related environment. They consider

a competitive search economy with sellers competing in offering non-linear price schedule (e.g.
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z(q)). Buyers have private information and, upon meeting a seller, choose the quantity they want

and pay z(q). This is related to our case with buyers choosing quantity ex-post. They show that

when sellers offer two-tier prices, even with buyers’private information about their value, the

competitive search equilibrium is constrained effi cient, otherwise it is not.

More recently Geromichalos (2012, 2014), and Godenhielm and Kultti (2015) also allow sellers

to produce multiple indivisible units at a convex cost. These authors also extend the choice of

capacity prior to the matching process. Within the labor market, Lester (2010) and Hawkins

(2013) allow firms to post multiple indivisible vacancies at a convex cost. However, all of these

papers assume that all terms of trade are posted and committed ex-ante, before the matching takes

place. In contrast to these papers, here we consider some ex-post opportunism. This is in the

spirit of Godenhielm and Kultti (2014) who also assume continuous quantity, but allow sellers to

choose capacity q simultaneously, and then prices. Production occurs before the matching process

and the authors consider two cases where capacity choices are observed by buyers or not when

selecting sellers. The equilibrium price is similar to Burdett et al. (2001), and hence, not tied to

marginal or average cost. In contrast here we also consider production on demand.

The other related literature is the one that relaxes the assumption of full commitment. They

do so by allowing some form of renegotiation on the posted terms of trade. For instance, Doyle

and Wong (2013) study a directed search labor market where firms post wages but allow for ex-post

wage renegotiation. The authors impose “downward commitment”so that firms can only commit

to paying no less than their advertised wage. In their environment, only a wage is posted and there

is no divisible hours of work, so there is no intensive margin. Along the same lines, Albrecht,

et al. (2016) consider the housing market and assume that sellers of an indivisible house cannot

commit to their advertised price. After the matching process, home owners can accept prices above

or below their advertised price. Buyers learn their idiosyncratic valuation for the house, after an

inspection, and each buyer submits a bid. They do so not knowing how many other bidders have

visited the seller of the house. Buyers can accept the asking price, submit a counteroffer, or walk

away. Unlike Doyle and Wong (2013) they do not impose “downward commitment”. However,

as in Doyle and Wong (2013), their good is indivisible and the only terms of trade is the house

price.8 In contrast to these later papers, here we focus on equilibria where some elements of the

terms of trade (price or quantity) are not committed ex-ante before the match takes place.

8Other models along the lines of allowing asking prices to be renegotiable are considered in Camera and Selcuk
(2009) and Lester, Visschers and Wolthoff (2016).
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3 The Model

We use the competitive search framework based on Montgomery (1991), Shimer (1996), and Moen

(1997) with a continuum of uncoordinated buyers and potential sellers, of measures b and s̄,

respectively. The measure of active sellers s is endogenously determined by free entry. Sellers

need to cover a fixed cost k to participate in the market. The aggregate active market tightness is

given by Θ = b/s. Buyers have preference u(q) over goods produced by sellers who incur a cost

c(q), where u(·) and c(·) satisfy usual properties of strict concavity and convexity. In addition,
u(0) = c(0) = 0 and u(q̂) = c(q̂) for some q̂ > 0.9 Any positive measure of sellers posting the

same terms of trade, ω = (p, q) ∈ P × Q ⊆ R2
+, form a submarket; where p denotes the per unit

price, q is the quantity or quality of the good, and θ is the corresponding buyer-seller ratio in

that submarket. Buyers have access to potentially a large number of these submarkets and choose

which market to enter. All actions are observable to everyone. Within each submarket, buyers and

sellers meet according to a matching technology that is homogeneous of degree one, where sellers’

(buyers’) meeting rate is α(θ) (α(θ)/θ), with α′(·) > 0, α′′(·) < 0, α(0) = 0, limθ→∞ α(θ) = 1,

limθ→0 α
′(θ) = 1, and limθ→∞ α

′(θ) = 0. We also define the elasticity of sellers’matching rate

ε(θ) = α′(θ)θ/α(θ) with ε′(θ) < 0. This property holds for many meeting technologies.10 Finally,

we define sellers’surplus as S(p, q) = pq − c(q) and buyers’surplus as B(p, q) = u(q)− pq.
Given this structure, we construct a competitive search equilibrium by looking for an optimal

deviation of a submarket where all sellers post terms of trade ω and the rest of sellers in other

submarkets post ωc. In equilibrium, buyers and sellers are indifferent across submarkets, and we

have that θ = Θ and ω = ωc. This allows us to focus on one submarket.

We first consider the effi cient allocation chosen by a planner in terms of extensive (entry)

and intensive margins (q). We then compare the decentralized allocation against the planner’

solution. As a benchmark, we first analyze a situation where sellers post ex-ante per unit prices and

quantities. We then explore a situation where sellers do not have as much ex-ante commitment. In

particular, we consider an environment where sellers post ex-ante per unit prices and the quantity

is determined ex-post; i.e., after matches have taken place. Finally, we characterize the equilibrium

9In Proposition 1 and 3 we show suffi cient conditions related to u′′′ and c′′′ for our results to hold.
10These properties are standard in the static version of the matching frameworks of Diamond-Mortensen-

Pissarides. The matching technology can take any form, urn-ball, Cobb-Douglas, Telephone Line, etc. Given
the submarket construct, one can choose any technology, either bilateral or multilateral meeting. What is impor-
tant is that matching/trading is always pairwise. See Lester et al. (2015) and Cai et al. (2016) for more details on
the relation between trading mechanisms and meeting technologies.
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where sellers post ex-ante quantities and the per unit price is set ex-post.

3.1 Planner’s Problem

A benevolent social planner maximizes the net expected total surplus by choosing a quantity to be

traded q and a measure of active sellers s. The planner however is constrained by the matching

technology that agents face. In particular, if the meeting technology in any submarkets allows

multilateral meetings, after sellers and buyers meet, the planner randomly selects a buyer to be

allocated with a seller, and if pairwise meeting technology, trading occurs with just one buyer.

Because of this, and as is standard in search and matching models, we refer to the planner’s

solution as the “constrained effi cient allocation”.

The planner solves the following problem

max
q,s

sα(Θ) [u(q)− c(q)]− sk,

which we can rewrite as follows

max
q,Θ

α(Θ)

Θ
[u(q)− c(q)]− k

Θ
.

Given the properties of the matching technology, utility and cost functions, we find the following

necessary and suffi cient conditions for optimal allocation

u′(qe) = c′(qe) (intensive margin),

α(Θe) [1− ε(Θe)] [u(qe)− c(qe)] = k (extensive margin), (1)

where ε(Θ) = α′(Θ)Θ/α(Θ) is the elasticity of the matching rate for sellers, and (qe,Θe) is the

constrained effi cient allocation in terms of the quantity traded and the market tightness, respec-

tively.

3.2 Ex-ante Price and Quantity Posting By Sellers

In this section, the posted terms of trade are akin to the competitive search section of Rocheteau

and Wright (2005) in which all terms of trade are posted ex-ante. Given that most competitive

search models, with a small number of exceptions as in Faig and Jerez (2005), the goods are

indivisible. We need a benchmark model with divisible goods, perfect information, and all terms of

trade posted ex-ante, the reason why we refer to Rocheteau and Wright (2005). When the meeting

technology in any submarkets allows multilateral meetings, upon meeting buyers, sellers randomly
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select a buyer to trade with, and if pairwise meeting technology, trading occurs with that buyer.

Then, sellers produce the quantity posted.

A positive measure of sellers choose the same terms of trade ω = (p, q) to form a submarket,

while other submarkets post the same ωc = (pc, qc). Sellers solve the following problem11

max
(p,q)

α (θ)S(p, q)

s.t.
α (θ)

θ
B(p, q) ≥ Ū ⇔ θ > 0

α (θ)

θ
B(p, q) < Ū ⇔ θ = 0,

where Ū = max(pc,qc)∈R2+ U(pc, qc,Θ) > 0 is the buyers’maximum expected market utility from

participating in any other submarkets.12 In any optimal deviation, the participation constraint

for buyers is always binding as in standard competitive search models. From the constraint, we

can obtain θ(ω; Ū), which represents buyers’ beliefs about the market tightness to prevail in the

deviating submarket posting ω. These beliefs are pinned down by the market utility Ū . Technically,

one can substitute θ(ω; Ū) in the sellers’ objective function and proceed with the maximization.

Alternatively, a much easier procedure is to allow the choice of θ directly in the maximization. It

is well known that these two procedures give the same allocation. Through the second procedure,

we can reduce the maximization problem to

max
(p,q),θ

α (θ)S(p, q) s.t.
α (θ)

θ
B(p, q) = Ū .

Solving the constraint for pq and substituting into S(p, q), it is easy to show that optimality implies

an effi cient equilibrium quantity q∗ = qe and an implied per unit price of

p∗(θ) =
[1− ε (θ)]u (q∗) + ε (θ) c (q∗)

q∗
,

where ε(θ) = θα′(θ)/α(θ) is again the elasticity of the seller’s matching rate.

In a symmetric equilibrium, we have that ω∗ = ωc and θ = Θ, which implies the following

equilibrium price

p∗(Θ) = [1− ε (Θ)]
u (q∗)

q∗
+ ε (Θ)

c (q∗)

q∗
, (2)

11In Rocheteau and Wright (2005), the terms of trade are posted by market makers. Here we assume sellers post
the terms of trade and buyers form beliefs about the associated queue length θ.
12This is commonly known as the market utility, first used by Montgomery (1991) and McAfee (1993), subse-

quently by Shimer (1996), Moen (1997), Acemoglu and Shimer (1999), and is now standard in competitive search
theory.
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which is a convex combination of average utility and cost evaluated at q∗. Notice that if we rewrite

the above pricing equation as

ε (Θ) =
u (q∗)− p∗q∗
u (q∗)− c(q∗) , (3)

we recover the standard Hosios sharing rule. This always holds endogenously in any standard

competitive search model when all terms of trade are committed ex-ante. The buyer’s and the

seller’s expected payoffs are B(p∗, q∗)α(Θ)/Θ and S(p∗, q∗)α(Θ), where their surpluses are given

by S(p∗, q∗) = p∗q∗ − c(q∗) and B(p∗, q∗) = u(q∗)− p∗q∗, respectively.
The competitive search equilibrium is always surplus maximizing, but, depending on Θ, it

could be that p∗(Θ) S u′(q∗) = c′(q∗). Notice that the equilibrium quantity does not depend

on Θ. A sudden inflow of buyers leading to a larger Θ would result in a higher price given that

ε′ (Θ) < 0 and no change in quantity traded. Under free entry, the equilibrium market tightness

Θ∗ is given by

α(Θ∗)[p∗q∗ − c(q∗)] = k.

Using (2), this becomes

α(Θ∗) [1− ε(Θ∗)] [u(q∗)− c(q∗)] = k.

As we can see, under ex-ante commitment to all terms of trade, the resulting equilibrium allocation

is constrained effi cient, i.e., (q∗,Θ∗) = (qe,Θe).

3.3 Ex-ante Price Posting and Ex-post Quantity by Sellers

Prices are posted ex-ante and sellers optimally choose quantities ex-post after the matches have

taken place. From observed prices, buyers decide which submarket to enter. To construct the

equilibrium, we need to not only account for the optimal deviation in price, but also the deviating

sellers’optimal ex-post reaction to their quantity choice given the ex-ante price.

Since the trading mechanism now has two stages, we solve for equilibrium backwards. We first

solve for sellers’optimal choice of q given p, and then solve for the competitive search equilibrium

choice of price p. We first do so without entry, and subsequently allow free entry.

Consider the ex-post problem where deviating sellers take posted per unit price p as given.

Upon meeting a buyer, they solve

max
q
S(p, q) s.t. B(p, q) ≥ 0.
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For interior solutions, the optimal quantity q̃ satisfies

p = c′ (q̃) and u (q̃) > pq̃,

when the constraint is not binding, while when it is binding, the optimal quantity is given by

p =
u (q̃)

q̃
and c′ (q̃) < p.

This yields a one-to-one relationship between prices and quantities q̃(p).

Lemma 1 In any competitive search equilibrium, given the posted price p, the optimal ex-post

choice of quantity by sellers is given by p = c′(q̃).

Taking as given the ex-post optimal choice q̃, we solve for the competitive search equilibrium

price. To be consistent with the previous notation, let B(p, q̃(p)) = u(q̃(p)) − pq̃(p) ≡ B̃(p) and

S((p, q̃(p)) = pq̃(p)− c(q̃(p)) ≡ S̃(p).

While other submarkets post the same pc and Θ, the positive measure of deviating sellers solve

max
p,θ

α (θ) S̃(p) s.t.
α (θ)

θ
B̃(p) ≥ Ū .

It is easy to show that the optimal solution satisfies

1− ε (Θ)

ε (Θ)
= −B̃

′(p)

S̃ ′(p)

S̃(p)

B̃(p)
, (4)

where ε (Θ) is as previously defined.

In a symmetric equilibrium, p = pc and θ = Θ, which implies p(Θ). From the previous

problem, it is a bit more involved to show existence and uniqueness. Fortunately, we can change

the problem by substituting for p = c′(q̃) instead and maximize as if sellers were choosing q̃

ex-ante.13 To simplify the notation, let q̃ = q from now on. The problem for sellers then become

max
q,θ

α (θ)S(q) s.t.
α (θ)

θ
B(q) ≥ Ū , (5)

where B(q) =B(c′(q), q) and S(q) = S(c′(q), q). The optimal solution q(Θ) satisfies

1− ε (Θ)

ε (Θ)
= −B

′(q)

S ′(q)

S(q)

B(q)
. (6)

13Given the nature of the trading mechanism, sellers rationally anticipate that buyers participate in the submar-
ket, knowing that sellers will choose q ex-post to maximize profit given the posted price that has attracted buyers
in the first place.
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Interestingly, the previous condition could be rewritten as

ε (Θ) =
ηs(q)

ηs(q) + ηb(q)
≡ χ(q), (7)

where ηs(q) = qS ′(q)/S(q) and ηb(q) = −qB′(q)/B(q) are the elasticities of surplus with respect to

output for sellers and buyers, respectively. This expression is a Hosios-like sharing rule expressed

in surplus elasticities. This is the case as the quantity q is determined ex-post. It is important

to highlight how sellers’optimal ex-post choice of q relates to the relative surpluses of buyers and

sellers as well as the seller’s contribution to the matching rate.

Proposition 1 For all Θ ∈ (0,∞), if qc′′′/c′′ < ηs(q) − 1, where ηs(q) = S ′(q)q/S(q) > 1, there

exists a unique symmetric equilibrium with all sellers choosing p(Θ) ex-ante and q(Θ) ex-post,

satisfying p(Θ) = c′(q(Θ)), where q(Θ) ∈ (q, q̄), B′(q) = 0 and B(q̄) = 0. In addition, both

(p(Θ), q(Θ)) are strictly increasing in Θ.

Posting prices ex-ante while quantities are determined ex-post by sellers always yields marginal

cost pricing under the suffi cient condition on the cost function, qc′′′/c′′ < ηs(q)−1. This condition

simply reflects that the elasticity of the sellers’surplus with respect to q needs to be large enough

relative to 1. Note that S is strictly convex, which implies that ηs(q) > 1. However, the surplus

needs to be convex enough relative to the convexity of the cost function. These conditions are

consistent with a wide range of cost functions, including c′′′ ≤ 0 and c′′′ > 0 but not too big (not

too convex). To understand why for any Θ ∈ (0,∞), q(Θ) ∈ (q, q̄), recall that by assumption

ε′ (Θ) < 0. As we show in the proof in Appendix, for the right-hand side of (7), χ(q) = 1 and

χ(q̄) = 0. Under the suffi cient condition, χ(q) is monotone decreasing in q over the interval. By

assumption as well, the matching function is constant returns to scale, which implies ε(Θ) ∈ (0, 1)

for all Θ ∈ (0,∞). The results of Proposition 1 are featuring in Figure 1.

Comparing the allocation obtained under ex-ante price relative to the planner’s problem, we

note that for a particular value of Θ, say Θc, such that q(Θc) = qe and

p(Θc)qe = c′(qe)qe = [1− ε (Θc)]u (qe) + ε (Θc) c (qe) , (8)

the full commitment (planner’s problem) and ex-ante pricing outcomes are equivalent. But this

holds only for a very specific value of Θc. It is then a knife-edge condition.

Under free entry, the allocation is constrained effi cient at the extensive margin if and only if

(8) holds and

α(Θc)[c′(qe)qe − c(qe)] = kc,
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Figure 1: Case of p = c′(q).

otherwise there is ineffi cient entry. Another way to view this result, is that given the unique

effi cient quantity qe, there is a unique entry cost kc that can generate Θc. These results are in

sharp contrast to the standard competitive search equilibrium, where sellers post unit prices and

quantities ex-ante as in Subsection 3.2 and constrained effi cient quantity qe and entry Θe are

always achieved. With ex-post quantity trading, effi ciency is achieved only if Θ happens to lead

to u′(q(Θ)) = p(Θ) = c′(q(Θ)). The ability to commit ex-ante to all terms of trade is critical to

obtain the constrained effi cient outcome.

Proposition 2 There exists a unique free entry equilibrium given an entry cost k > 0 for sellers.

The equilibrium is generically not constrained effi cient, at the intensive, q, or the extensive margin

of entry, Θ.

The generic free entry condition is given by

α(Θ)[c′(q(Θ))q(Θ)− c(q(Θ))] = k.

It is easy to show that the left-hand side is strictly increasing in Θ ∈ (0,∞) for q(Θ) ∈ (q, q̄). It

is clear then that only for a very particular value of kc, we have Θc such that q(Θc) = qe. Thus

entry is effi cient. Entry can be insuffi cient when k > kc ⇒ Θ > Θc and q(Θ) > qe, or excessive

for costs such that k < kc ⇒ Θ < Θc and q(Θ) < qe. For low cost of entry, the equilibrium entails

buyers’surplus being large (sellers’small), while for very large entry cost, buyers get their surplus
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almost fully extracted by sellers. A low cost facilitates entry and tilts the bargaining power afforded

by the market (via Θ) towards the buyers, and vice versa for a large cost.

Exploring this “partial commitment” is interesting because it has many applications such as

new real estate construction and labor market. The labor market suits this setup particularly well.

Assume that a measure v of vacancies are to be matched with a measure u of unemployed, with

Θ = v/u (thus firms are buyers and workers are sellers). The surplus from a match is f(h) where

h is the hours worked by workers upon a match. Let c(h) be the cost for workers implementing h,

and wh be the wage revenue paid from the firm to the worker. Consider setting up the competitive

search problem as workers (sellers) competing by posting (w, θ) to attract firms, and then choose h

ex-post.14 This environment fits perfectly the above setup where q ≡ h, u(q) ≡ f(h), c(h) ≡ c(q),

and wh ≡ pq. All results follow. Workers would set wages ex-ante and choose hours ex-post such

that w = c′(h). Only a particular value of Θ would result in f ′(h(Θ)) = w(Θ) = c′(h(Θ)), and so

workers would be paid at their marginal product. Otherwise, for other values of Θ, workers could

be paid above or below their marginal product. A sudden increase in Θ would lead to increase

in both wage and hours worked. Compared to workers posting (w, h, θ), hours in equilibrium

would always be determined by effi cient hours f ′(he) = c′(he), independent of Θ, with only wage

increasing in Θ.

3.4 Ex-ante Price Posting by Sellers and Ex-post Quantity by Buyers

In this section we consider the natural possibility that buyers instead of sellers choose quantity

ex-post, while sellers still post prices ex-ante. This environment has even more applications than

the one highlighted in the previous subsection.15 Given p, ex-post buyers solve

max
q
u(q)− pq s.t. pq − c(q) ≥ 0.

For interior solutions, the optimal quantity q̃ satisfies

u′(q̃) = p and pq̃ > c(q̃),

14Note that for our results to apply, we need to have workers posting as in Julien, et al. (2000), and choosing
their hours ex-post. Otherwise, one can have firms posting as in Burdett et al. (2001), and choosing hours ex-post.
15In terms of applications for this demand determined ex-post quantity, the labor market example with hours of

work in the previous section also fits this environment. In this context, one can envision workers (sellers) posting
wages ex-ante and firms (buyers) choosing hours h ex-post or firms (sellers) posting wages ex-ante and workers
(buyers) choosing hours ex-post. Essentially, any environments in which prices are posted and quantity consumed
are chosen by buyers and produced on demand is a good fit (e.g. recent trends of markets where prices are known
by consumers but quantity or quality are made on order, Dell Inc. in retail and many wholesale markets).
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when the constraint is not binding. When it is binding, the optimal quantity is given by

p =
c (q̃)

q̃
and u′ (q̃) < p.

This yields a one-to-one relationship q̃(p) with q̃′(p) < 0.

Lemma 2 In any competitive search equilibrium, given the posted price p, the optimal ex-post

choice of quantity by buyers is given by p = u′(q̃).

This result is analogous to Lemma 1, the case of sellers choosing q ex-post, with the difference

of marginal utility pricing instead of marginal cost pricing and q̃′(p) < 0 rather than being positive.

Proposition 3 For all Θ ∈ (0,∞), if qu′′′/u′′ < ηb(q)− 1, where ηb(q) = B′(q)q/B(q) > 1, there

exists a unique symmetric equilibrium with all sellers choosing p(Θ) ex-ante and buyers choosing

q(Θ) ex-post, satisfying p(Θ) = u′(q(Θ)), where q(Θ) ∈ (q, q̄), S ′(q) = 0 and S(q̄) = 0. In addition,

p(Θ) is strictly increasing in Θ while q(Θ) is strictly decreasing in Θ.

Posting prices ex-ante with quantities determined ex-post by buyers always yields marginal

utility pricing as long as the utility function is such that qu′′′/u′′ < ηb(q)− 1. The elasticity of the

buyers’surplus with respect to q needs to be large enough relative to 1. To understand the suffi cient

condition for uniqueness of equilibrium, note that B is strictly convex implying ηb(q) > 1, but the

surplus needs to be convex enough relative to the concavity of the utility function.16 The above

condition encompasses a wide range of utility functions, including u′′′ ≥ 0 and u′′′ < 0 not too

negative (not too concave). To understand why for any Θ ∈ (0,∞), q(Θ) ∈ (q, q̄), recall that

by assumption ε′ (Θ) < 0. As we show in the proof in Appendix, for the right-hand side of (7),

χ(q) = 0, χ(q̄) = 1, and under the suffi cient condition, χ(q) is monotone increasing in q over the

interval. By assumption again, the matching function is constant returns to scale which implies

ε(Θ) ∈ (0, 1) for all Θ ∈ (0,∞). The results of Proposition 3 are featuring in Figure 2.

Comparing this equilibrium allocation to that of the planner’s problem, we note that if for a

particular value of Θ, say Θc, such that q(Θc) = qe and

p(Θc)qe = u′(qe)qe = [1− ε (Θc)]u (qe) + ε (Θc) c (qe) , (9)

the full (planner’s problem) and partial commitment outcomes are equivalent. But this holds only

for a very specific value of Θc.
16Note that here ηb(q) > 0 because when p = u′(q), B′(q) > 0, unlike the case of p = c′(q) and B′(q) < 0, so

there we have defined ηb(q) = −B′(q)q/B(q) > 0.
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Figure 2: Case of p = u′(q).

Under free entry, the allocation is constrained effi cient at the extensive margin if and only if

(9) holds and

α(Θc)[u′(qe)qe − c(qe)] = kc,

otherwise there is ineffi cient entry. Again here, given the unique effi cient quantity qe, there is a

unique entry cost kc that can generate Θc. These results echo the ones with marginal cost pricing

that we found in the previous section.

Proposition 4 Given an entry cost k > 0, there exists a unique equilibrium that is generically

not constrained effi cient, at the intensive, q, or the extensive margin, Θ.

The generic free entry condition for this problem is given by

α(Θ)[u′(q(Θ))q(Θ)− c(q(Θ))] = k.

It is easy to show that the left-hand side is strictly increasing in Θ ∈ (0,∞) for q(Θ) ∈ (q, q̄).

Then only for a very particular value of kc, leading to Θc such that q(Θc) = qe, entry is effi cient.

Otherwise, entry is insuffi cient, for k > kc ⇒ Θ > Θc and q(Θ) < qe, or excessive for k < kc ⇒
Θ < Θc and q(Θ) > qe. For low cost of entry, the equilibrium entails sellers’surplus being small

(buyers large), while for very large entry cost, sellers get large surplus (buyers small), and this

echoes the result of entry under marginal cost pricing in the previous section. However, there is
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one important difference. Because in equilibrium we have q′(p) < 0, with marginal utility pricing,

the direction of ineffi ciency is the reverse when comparing the two cases. Therefore, it matters if

quantity is chosen ex-post by sellers (supply side) or by buyers (demand side).

Since the environment we have considered is related to the one analyzed in Peters (1984), we

offer a more detailed comparison. For a special case of his model, Peters (1984) considers an

environment with price competition among firms when there are capacity constraints and buyers

have limited ability to visit firms. Each firm selects, at the beginning of the game, a price which

it will charge consumers and a rationing rule, which specifies how the firm will allocate output

if its capacity constraint is binding. Knowing price and this rationing rule, consumers choose a

shopping strategy. It is assumed that buyers are only able to visit a single store.

Peters (1984) considers a market with finite agents and his Proposition 3 establishes that as the

number of sellers goes to infinity, keeping the number of buyers finite, the gain for sellers to deviate

from average cost pricing is less than ε. Therefore, p = c(q)/q is an approximate equilibrium. This

is quite an intuitive result. Sending the number of sellers to infinity while keeping buyers finite

drives the market tightness to zero. This situation emulates a perfectly competitive market. Then,

it should be no surprise that equilibrium pricing gives zero profit to sellers.

In addition, Peters (1984) assumes an exogenous capacity K such that c′(q) = ∞, for all
q ≥ K. The ex-post demand by a buyer is q = min{d(p), K}. This assumption of capacity was
made in the spirit of the Edgeworth’s model. Peters (1984) acknowledges that if the number of

buyers and sellers grow large together, this may change his result.17 Let us consider a similar

capacity constraint K in our model. The optimal choice for buyers depends on capacity as q =

min{u′−1(p), K}. Note that in the above analysis leading to Proposition 3, we assume that the
capacity constraint q ≤ K is not binding, and buyers choose ex-post quantity such that p = u′(q). In

contrast to Peters (1984), we argue that this ex-post marginal utility pricing is indeed an equilibrium

if the capacity constraint is not severe. Otherwise, the average cost pricing of Peters (1984) holds.

If min{u′−1(p), K} = K, implying that u′(q) > p, the optimal buyer’s ex-post choice is to consume

at q = K, and hence p = c(K)/K. For severe capacity constraints, the result of Peters (1984)

can hold in large market as both buyers and sellers are taken to infinity.

17If all firms are pricing at the average cost of producing their capacity, any single firm might be able to increase
its profits by raising price. However, if price is raised to p > c(q)/q so that U(p,K) < Ū , the probability with
which any buyer would visit the firm falls to zero, as would the firm’s profits.
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3.5 Ex-ante Quantity Posting and Ex-post Pricing by Sellers

In this section, we assume that sellers can post a quantity ex-ante and then choose the per unit

price ex-post, after buyers choose which seller to visit. Working backwards, sellers take as given

posted quantity ex-ante and solve

max
p
S(p, q) s.t. B(p, q) ≥ 0.

Sellers are able to extract all the surplus by pricing p∗ = u(q)/q = g(q). Note that the seller’s

pricing decision does not directly depend on θ. Differentiating this ex-post pricing decision, it is

easy to show that

q
dp∗

dq
= u′ (q)− p∗. (10)

In a similar way as in the previous sections, we can transform the competitive search program

using p = g(q), with ex-ante sellers posting ω = (q, θ) ∈ R2
+, to solve

max
q,θ

α (θ)S(g (q) , q) s.t.
α (θ)

θ
B(g(q), q) = 0. (11)

That is, the market utility Ū = 0, with solution

p∗ + qdp∗/dq − c′(q) = 0.

Together with (10) implies an effi cient qe as u′(qe) = c′(qe).

When sellers post quantities ex-ante and choose prices ex-post, they choose to post the effi cient

quantity to attract buyers, and then extract all the surplus from trade by adjusting prices ex-post.

This is akin to the Diamond (1971) equilibrium. Buyers fully anticipate that the seller’s best

ex-post choice is to fully extract all of their surplus, which implies that Ū = 0, and thus buyers are

indifferent between participating or not. This equilibrium would occur for even a non-zero value

Z of outside option for buyers.18 The equilibrium would entail Ū = Z. If sellers were given the

choice of what to post ex-ante, no sellers would want to deviate from posting only q ex-ante.

The equilibrium entry is given by

α(Θ∗)[u(qe)− c(qe)] = k.

Compared to the planner’solution (1), Θ∗ < Θe and there is excessive entry of sellers. The result

follows directly from sellers extracting all the surplus.
18The problem becomesmaxp S(p, q) s.t. B(p, q) ≥ z, with pricing p∗ = [u(q)−z]/q = g(q). From this, q∂p∗/∂q =

u′ (q)− p∗. Sellers take the ex-post pricing rule as given and solve maxq,θ α (θ)S(g (q) , q) s.t. [α (θ) /θ]B(g(q), q) =
Z, with solution S′(g (q) , q)g′ (q) = p∗ + q∂p∗/∂q − c′(q) = 0, and the effi cient q results.
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Proposition 5 When sellers post quantities ex-ante and prices ex-post, a symmetric equilibrium

exists where buyers get zero surplus and the constrained effi cient allocation is implemented for the

intensive margin (q), but entry is excessive.

Although this case is interesting, examples of such mechanisms are harder to find. Potentially,

items advertised with undisclosed prices and where buyers are asked to request a quote seem to fit

this model.

3.6 Ex-ante Quantity Posting by Sellers and Ex-post Pricing by Buy-
ers

Finally, just for completeness, we consider an environment where sellers post quantity ex-ante,

but let buyers choose what price to pay ex-post. Working backwards, buyers take as given posted

quantity ex-ante and solve

max
p
B(p, q) s.t. S(p, q) ≥ 0.

Buyers are able to extract all the surplus by pricing p∗ = c(q)/q = h(q). Note that the buyers’

pricing decision does not directly depend on θ. Differentiating this ex-post pricing decision, it is

easy to show that

q
dp∗

dq
= c′ (q)− p∗. (12)

Similarly, we can transform the competitive search program using p = h(q), with ex-ante sellers

posting ω = (q, θ) ∈ R2
+, to solve

max
q,θ

α (θ)S(h (q) , q) s.t.
α (θ)

θ
B(h(q), q) = Ū .

The solution is

u′(q)− p∗ − qdp∗/dq = 0.

Together with (12) implies an effi cient qe as u′(qe) = c′(qe).

When sellers post quantities ex-ante and buyers choose prices ex-post, sellers choose to post the

effi cient quantity to attract buyers, knowing buyers will then extract all the surplus from trade by

adjusting prices ex-post. If there is an entry cost k > 0, no sellers would be active in the market

since S(h(q), q) = 0 < k. There is no equilibrium with an active market. Because k is a sunk

cost, sellers are being held up entirely if buyers can choose the price ex-post. This may explain

why such a mechanism is seldom in markets.
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4 Conclusion

We consider a frictional market where buyers are uncoordinated and sellers cannot commit to

both per unit price and quantity of a divisible good ex-ante. As in Kim and Kircher (2015), the

choice of the trading mechanism is crucial in determining whether the equilibrium is constrained

effi cient or not. In particular, we find that when sellers post ex-ante prices, there exists a unique

symmetric equilibrium with marginal cost pricing if sellers choose quantity ex-post, and with

marginal utility pricing if buyers choose quantity ex-post instead. The equilibrium is generically

not constrained effi cient at the intensive or the extensive margin, and the extent of ineffi ciency

in quantity are inversely related whether sellers or buyers make the ex-post choice. When sellers

post ex-ante quantities and choose a price ex-post, in the unique symmetric equilibrium, buyers

get their surplus extracted as in Diamond (1971) equilibrium. However, the effi cient quantity is

always produced but there is excessive entry. If sellers choose quantities ex-ante but buyers are

able to choose a price ex-post, with positive entry cost, this generates a severe holdup problem

and there is no equilibrium with active trade. All of our results hold for a wide range of utility

and cost functions.
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Appendix

Proof of Lemma 1

Define q̄ such that u(q̄) = q̄c′(q̄) (i.e. B(q̄) = 0) and p̄ = c′(q̄). We summarize the seller’s

optimal ex-post choice as follows:

p =

{
c′ (q̃) for p ∈ (0, p̄],
u (q̃) /q̃ for p ∈ (p̄,∞).

It is important to highlight that both of these solutions imply a monotone relationship between

quantity and price. Notice the following

p ≤ p̄⇒ q̃′(p) = 1/c′′(q̃) > 0 (interior),

p > p̄⇒ q̃′(p) =
q̃2

q̃u′ (q̃)− u (q̃)
< 0 (binding).

In a competitive search equilibrium with Θ ∈ (0,∞), the positive measure of deviating sellers

can choose a price that is either in (0, p̄] for an interior solution or in (p̄,∞) under binding

constraint. Define the first possible deviation as p1 = c′ (q̃1) and the second possible deviation as

p2 = u (q̃2) /q̃2. It is easy to show that the seller’s expected payoff is

π1 ≡ α (Θ) [q̃1c
′ (q̃1)− c (q̃1)] and π2 ≡ α (Θ) [q̃2u (q̃2) /q̃2 − c (q̃2)] ,

while for buyers we have

U1 ≡
α (Θ)

Θ
[u(q̃1)− q̃1c

′(q̃1)] > 0 =
α (Θ)

Θ
[u(q̃2)− q̃2u(q̃2)/q̃2] ≡ U2.

It is clear that B̃(p2) = 0 holds when the buyers’surplus is fully extracted, and no buyers would

participate in a deviating submarket that offers p2 and q̃2. Buyers fully anticipate that the best

ex-post choice of sellers is to fully extract all of their surplus. It must be that any price as part of a

competitive search equilibrium is p ∈ (0, p̄]. The optimal ex-post choice is then p1 = c′(q̃1) ∈ (0, p̄].

In other words, q̃1(p1) is the equilibrium anticipated seller’s response by buyers. �

Proof of Proposition 1

To show existence, first, rewrite (7) as

ε (Θ) =
B(q)S ′(q)

B(q)S ′(q)−B′(q)S(q)
≡ χ (q) . (13)

This condition characterizes a relationship q(Θ). According to Lemma 1, p = c′(q). Since B(q) =

u(q) − c′(q)q, we find B(0) = 0 = S(0). Then, ∃! q̄ > 0 such that B(q̄) = 0. In addition, ∃!
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q ∈ (0, q̄) such that B′(q) = 0. For q ∈ (q, q̄),

B′(q) = u′(q)− c′(q)− c′′(q)q < 0,

B′′(q) = u′′(q)− 2c′′(q)− c′′′(q)q < 0 if c′′′(q) ≥ 0 or c′′′(q) < 0 not too large.

Thus, B(q) is downward concave under these suffi cient conditions. Similarly, we find that for

S(q) = c′(q)q − c(q),

S ′(q) = c′′(q)q > 0,

S ′′(q) = c′′(q) + c′′′(q)q > 0 if c′′′(q) ≥ 0 or c′′′(q) < 0 not too large.

Hence, S(q) is upward convex under these suffi cient conditions on the cost function. We also have

that χ(q) = 1, and χ(q̄) = 0, with χ (q) > 0, ∀q ∈ [q, q̄). Since we focus on matching technologies

with constant returns to scale, it follows that ε(Θ) ∈ (0, 1), ∀Θ ∈ (0,∞). Therefore, given ε(Θ),

∃ q(Θ) ∈ (q, q̄) such that (13) holds and a symmetric equilibrium exists.

To prove uniqueness, we show suffi cient conditions for χ′ (q) < 0, ∀q ∈ (q, q̄). Using (13), we

find (omitting q as an argument)

χ′ (q) =
(B′S ′ +BS ′′)(BS ′ −B′S)−BS ′(B′S ′ +BS ′′ −B′′S −B′S ′)

(BS ′ −B′S)2

=
−SS ′(B′2 −BB′′) +BB′(S ′2 − SS ′′)

(BS ′ −B′S)2
. (14)

We have B′(q) < 0, ∀q ∈ (q, q̄), S ′(q) > 0, B′′(q) < 0 and S ′′(q) > 0, if c′′′(q) ≥ 0 or c′′′(q) < 0

not too large by assumption. For χ (q) to be monotonically decreasing in q over (q, q̄), we need

S ′2 − SS ′′ > 0. This condition holds if

c′′′q

c′′
< ηs(q)− 1,

where ηs(q) = S ′(q)q/S(q) > 1, due to the convexity of S(q). Hence, we also need c′′′(q) ≥ 0, not

too large. Therefore, as long as c′′′(q) < 0 not too negative to preserve the properties of B(q) and

S(q), and c′′′(q) ≥ 0 not too positive, we have χ′ (q) < 0, ∀q ∈ (q, q̄), and there exists a unique

equilibrium q ∈ (q, q̄), ∀Θ ∈ (0,∞).

Notice that we cannot have an equilibrium with q ∈ (0, q). Since B′(q) = u′(q)−c′(q)−c′′(q)q =

0, we have u′(q) > c′(q), q < qe, where u′(qe) = c′(qe), and B′(q) > 0 over (0, q). In any competitive

search equilibrium, if q ∈ (0, q), a positive measure of sellers can deviate and increase q, and

increase buyers’surplus B(q) while sellers’surplus S(q) also increases.
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On the other hand, for any competitive search equilibrium with q ∈ (q̄, q̂], where u(q̂) = c(q̂),

B(q) < 0 over this interval and S(q) = 0, since the implied queue length Θ = 0. A positive

measure of sellers can deviate and post q1 = q̄ − ε, attracting a positive measure of buyers by

offering them B(q1) > 0, and get positive surplus S(q1) > 0. Hence, we cannot have q ∈ (q̄, q̂] in

any competitive search equilibrium.

We are left to show that for any Θ ∈ (0,∞), neither q nor q̄ is an equilibrium. Consider the

Lagrangian of the competitive search program:

L = max
q,θ

α(θ)S(q) + λ[
α(θ)

θ
B(q)− Ū ],

with necessary (and suffi cient) conditions

∂L
∂q

= α(θ)S ′(q) + λ
α(θ)

θ
B′(q) = 0,

∂L
∂θ

= α′(θ)S(q) + λ

[
α′(θ)θ − α(θ)

θ

]
B(q) = 0.

These conditions lead to (13) and are valid for any θ = Θ ∈ (0,∞). Now transform the second

condition as
λ

θ
=

ε(θ)

1− ε(θ)
S(q)

B(q)
,

with ε(θ) = α′(θ)θ
α(θ)

. Substituting into the first condition gives

∂L
∂q

= α(θ)S ′(q) +
ε(θ)

1− ε(θ)
S(q)

B(q)
α(θ)B′(q).

Since B′(q) = 0,
∂L
∂q
|q=q = α(θ)S ′(q) > 0,

and B(q̄) = 0,
∂L
∂q
|q=q̄ = −∞ < 0.

Therefore, neither q nor q̄ is an equilibrium for θ = Θ ∈ (0,∞).

Finally, by assumption we have ε′ (Θ) < 0, and note as in the text that this holds for a large

set of matching technologies. From (13), we have

ε′ (Θ) dΘ = χ′ (q) dq ⇒ dq

dΘ
> 0⇒ dp

dΘ
= c′′(q)

dq

dΘ
> 0.

Therefore, any increase in Θ leads to higher q and p over (q, q̄). �

Proof of Proposition 2
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The proof follows from the text.

Proof of Lemma 2

Define q̄ such that c(q̄) = q̄u′(q̄) (i.e. S(q̄) = 0) and p̄ = u′(q̄). We summarize the buyers’s

optimal ex-post choice as follows:

p =

{
c (q̃) /q̃ for p ∈ (0, p̄),
u′ (q̃) for p ∈ [p̄,∞).

It is important to highlight that both of these solutions imply a monotone relationship between

quantity and price. Notice the following

p < p̄⇒ q̃′(p) =
q̃2

q̃c′ (q̃)− c (q̃)
> 0 (binding),

p > p̄⇒ q̃′(p) = 1/u′′(q̃) < 0 (interior).

In a competitive search equilibrium with Θ ∈ (0,∞), the positive measure of deviating sellers

can choose a price that is either in [p̄,∞) for an interior solution or in (0, p̄) under binding

constraint. Define the first possible deviation as p1 = u′ (q̃1) and the second possible deviation as

p2 = c (q̃2) /q̃2. It is easy to show that the buyer’s expected payoff is

U1 ≡
α (Θ)

Θ
[u(q̃1)− q̃1u

′(q̃1)] and
α (Θ)

Θ
[u(q̃2)− q̃2c(q̃2)/q̃2] ≡ U2,

while for sellers we have

π1 ≡ α (Θ) [q̃1u
′ (q̃1)− c (q̃1)] > 0 = π2 ≡ α (Θ) [q̃2c (q̃2) /q̃2 − c (q̃2)] .

It is clear that π2 = 0 holds when the sellers’ surplus is fully extracted, and no sellers would

deviate and offer p2 and q̃2 in a submarket. Sellers fully anticipate that the best ex-post choice of

buyers is to fully extract all of their surplus. It must be that any price as part of a competitive

search equilibrium is p ∈ [p̄,∞). The optimal ex-post choice is then p1 = c′(q̃1) ∈ [p̄,∞). In other

words, q̃1(p1) is the equilibrium anticipated buyers’s response by sellers. �

Proof of Proposition 3

The proof is very similar to the one of Proposition 1. First, to show existence, we use again

ε (Θ) =
B(q)S ′(q)

B(q)S ′(q)−B′(q)S(q)
≡ χ (q) , (15)
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where under p = u′(q), S(q) = u′(q)q−c(q) and B(q) = u(q)−u′(q)q. ∃! q > 0 such that S ′(q) = 0,

which implies u′(q) − c′(q) = −u′′(q)q > 0 ⇒ q < qe (the effi cient quantity). Also ∃! q̄ > 0 such

that S(q̄) = 0. For q ∈ (q, q̄), we find (omitting q as an argument)

S ′ = u′′q + u′ − c′ < 0,

S ′′ = 2u′′ − c′′ + u′′′q < 0 if u′′′ ≤ 0 or u′′′ > 0 not too large.

Thus, S(q) is downward concave under these suffi cient conditions on the utility function. For

buyers,

B′ = −u′′q > 0

B′′ = −u′′ − u′′′q > 0 if u′′′ ≤ 0 or u′′′ > 0 not too large.

Hence, B(q) is upward convex under the suffi cient conditions on the utility function. We also have

that χ(q) = 0 and χ (q̄) = 1, with χ (q) > 0, ∀q ∈ (q, q̄). Again, since ε(Θ) ∈ (0, 1), ∀Θ ∈ (0,∞),

there exists a q ∈ (q, q̄) satisfying (15).

To prove uniqueness, we need χ′ (q) > 0, ∀q ∈ (q, q̄). Using (15) and the properties of B(q)

and S(q), we can derive the following suffi cient condition

u′′′q

u′′
< ηb(q)− 1⇒

(
B′2 −B′′B

)
> 0,

where ηb(q) = B′(q)q/B(q) > 1, due to the convexity of B(q). Note that if u′′′ is negative while

preserving the properties of B(q) and S(q) as above, or u′′′ ≥ 0 but not too positive, this condition

holds and we have χ′ (q) > 0, ∀q ∈ (q, q̄). Then, there exists a unique equilibrium q ∈ (q, q̄),

∀Θ ∈ (0,∞).

Notice that we cannot have an equilibrium with q ∈ (0, q). Since S ′(q) = u′(q)−c′(q)+u′′(q)q =

0, we have u′(q) > c′(q) and q < qe where u′(qe) = c′(qe), and S ′(q) > 0 over this interval. In

any competitive search equilibrium, if q ∈ (0, q), a positive measure of buyers can increase q, and

increase sellers’surplus S(q) while buyers’surplus B(q) also increases.

On the other hand, for any competitive search equilibrium with q ∈ (q̄, q̂], where u(q̂) = c(q̂),

S(q) < 0 over this interval and B(q) = 0, since sellers will not produce for negative surplus. A

positive measure of sellers can deviate and post q1 = q̄− ε, attracting a positive measure of buyers
by offering them B(q1) > 0, and get positive surplus S(q1) > 0. Hence, we cannot have q ∈ (q̄, q̂]

in any competitive search equilibrium.
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We are left to show that for any Θ ∈ (0,∞), neither q nor q̄ is an equilibrium. Consider the

Lagrangian of the competitive search program:

L = max
q,θ

α(θ)S(q) + λ[
α(θ)

θ
B(q)− Ū ],

with necessary (and suffi cient) conditions

∂L
∂q

= α(θ)S ′(q) + λ
α(θ)

θ
B′(q) = 0,

∂L
∂θ

= α′(θ)S(q) + λ

[
α′(θ)θ − α(θ)

θ

]
B(q) = 0.

These conditions lead to (15) and are valid for any θ = Θ ∈ (0,∞). As in the proof of Proposition

1, we can derive
∂L
∂q

= α(θ)S ′(q) +
ε(θ)

1− ε(θ)
S(q)

B(q)
α(θ)B′(q).

Since S ′(q) = 0,
∂L
∂q
|q=q =

ε(θ)

1− ε(θ)
S(q)

B(q)
α(θ)B′(q) > 0,

and S(q̄) = 0,
∂L
∂q
|q=q̄ = α(θ)S ′(q̄) < 0.

Therefore, neither q nor q̄ is an equilibrium when θ = Θ ∈ (0,∞).

Finally, by assumption we have ε′ (Θ) < 0. From (15)

ε′ (Θ) dΘ = χ′ (q) dq ⇒ dq

dΘ
< 0⇒ dp

dΘ
= u′′(q)

dq

dΘ
> 0.

Therefore, any increase in Θ leads to lower q and higher p over (q, q̄). �

Proof of Proposition 4

The proof follows from the text.

Proof of Proposition 5

The proof follows from the text.
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