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Abstract

Fishers pay attention to where other fishers are fishing, suggesting the potential for

peer effects. But peer effects are difficult to identify without an exogenous shifter of

peer group membership. We propose an identification strategy that exploits a shifter

of peer group membership: gold rushes of new entrants. Following an exchange-rate-

induced gold rush in an American fishery, we find that new entrants are strongly influ-

enced by the location choices of their peers. Over-identification tests suggest that the

assumptions underlying identification hold when new entrants are inexperienced but

identification is lost as new entrants start to potentially influence their peers.
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1 Introduction

"Upon spotting another dive boat, the seasoned skipper immediately takes a look

through his glasses, mentally recording the area, jotting it down in his notebook,

or punching in the coordinates on his plotter. It’s important to know where the

competition is diving." - Tom Kendrick, Blue Water Gold Rush

Peer effects are notoriously difficult to identify without an exogenous source of peer group

variation.1 Well-known examples of exogenous peer group variation include the random

assignment of college roommates (Sacerdote, 2001; Zimmerman, 2003), the quasi-random

introduction of different personnel into a work shift (Mas and Moretti, 2009), and school

integration/reassignment policies (Angrist and Lang, 2004). Peer effects identification in

other contexts has been hampered by a lack of experimental or quasi-experimental sources

of peer group variation.

In this paper, we propose an identification strategy for estimating peer effects in a resource

extraction setting. Resource extractors (such as fishers) have to decide where to extract

resources, often with incomplete knowledge about where the most abundant or valuable

resources are located. Extractors typically make these decisions based on private and public

information: public information may include the location choices of other extractors. In

this paper, we are interested in whether an individual resource extractor’s location choice is

influenced by the location choice of his or her peers.2 This is valuable public information,

especially when private information is limited. We argue that gold rushes, defined as a rapid

movement of people to a newly discovered resource, provide a rich source of peer group

variation. We use this approach to identify a location choice peer effect in an American

fishery that experienced a gold rush due to unprecedented demand for high-end sushi in

Japan. The approach only appears to work over a limited time horizon, suggesting that the

common hurdles to identification quickly become pervasive. This has important implications
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for the literature on location choice in environmental and resource economics: it demonstrates

that peer effects are a genuine empirical phenomenon but are extremely difficult to estimate.

But why bother to estimate peer effects among resource extractors in the first place?

Peer effects matter in resource economics for the same reason that they matter in education

and labor economics: policy outcomes may be drastically different in the presence of peer

interactions, especially peer learning. For example, policies such as forced desegregation

and school voucher programs will have different outcomes depending on the nature of peer

effects and whether they generate large social multipliers (Epple and Romano, 1998; Hoxby,

2000). Likewise, the outcomes of many resource management policies depend on assumptions

about peer interactions. Examples of natural resources where peer effects can change policy

outcomes include oil (Polasky, 1996; Lin, 2009), forests (Robalino and Pfaff, 2010), water

(Pfeiffer and Lin, 2010) and fish (Costello and Deacon, 2007).3

Why use gold rushes to estimate peer effects? One of the main reasons for the lack of

reduced form estimation of peer effects in resource settings has been a difficulty in finding

exogenous sources of peer variation (Vignaux, 1996).4 Gold rushes, which occur during the

extraction of many natural resources, create a stream of individuals who have not previously

interacted with their peers but now have very strong incentives to pay attention to them.

As will be outlined in Section 3, this means that many of the biases (simultaneity, correlated

effects, etc.) that hinder identification of peer effects using non-experimental data can be

overcome.

The gold rush we study occurred in the Northern California sea urchin fishery in the

late 1980s and early 1990s due to a boom in the Japanese economy. Section 2 provides

some background and describes the data set, while Section 3 presents the empirical frame-

work. Section 4 presents the results and Section 5 tests the robustness of our identifying

assumptions. Section 6 concludes.
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2 Background and Data

“The large and unexploited sea urchin biomass in northern California sparked

a ‘gold rush’ as hundreds of new fishermen entered the unregulated fishery.” -

California Department of Fish and Game, Annual Status of the Fisheries Report

The Japanese economy boomed in the late 1980s and started to gradually decline in the

1990s with the Nikkei 225 stock index reaching an all-time high on December 29, 1989

(Figure 1). During this period of growing Japanese affluence, the yen strengthened sharply

against the US dollar, reaching an all-time high in April 1995 (Figure 1). Rising demand

for luxury goods among Japan’s wealthy elite in tandem with a weak dollar caused a rapid

appreciation in the price paid for Californian sea urchin; the average price paid for a pound

of sea urchins increased roughly 350% from 1988 to 1995. Sea urchin roe is a delicacy served

in sushi restaurants where it is listed on menus as uni. Uni is reputed to be an aphrodisiac

and is often the most expensive item available, with Californian urchins particularly sought

after. Unprecedented demand for sea urchins, combined with declining stocks in southern

California, caused a modern-day Californian gold rush as hundreds of urchin boat captains

migrated to Northern California’s frigid, shark-infested but urchin-rich waters. Figure 2

shows the extent of the “Blue Water Gold Rush”: from a small group of roughly 30 boats in

1987, there was a surge of new entrants in 1988 (84 new entrants), 1989 (71 new entrants)

and 1990 (49 new entrants), with the fishery reaching a peak of 154 boats in 1992.5

Fishing for sea urchins is a relatively low-tech activity. In the northern California red

urchin fishery, urchin divers make single day trips to locations close to shore where they

may dive as deep as 60 feet. Nearly all boats are owned by the divers themselves. A diver

is normally connected to the surface by a tube that supplies compressed air. On a typical

dive, an urchin diver will drag a large rope bag down with him, anchor that to the bottom

4



then set off with a rope cage, fill that up with urchins, come back to the bag, offload the

harvested urchins in the bag and then set off again. When done, the diver inflates a buoy

attached to the bag with oxygen and it rises to the surface. Visibility and fitness are key

determinants of productivity (conditional on there being urchins at a particular site). At

the dock, the urchins are unloaded and a processor removes the gonads (urchin roe). About

10% of the weight of a whole urchin is roe.

Aside from the benefit of the gold rush causing an influx of new peers, the Northern

California sea urchin fishery has other features that are conducive to the estimation of peer

effects. First, the biology of the red sea urchin (Strongylocentrotus franciscanus) is an asset:

urchins remain in the same geographic locations for long periods of time so information

about productive areas remains valuable for much longer than in fisheries where the target

species is highly mobile.6 Urchins are firmly attached to the sea-floor by adhesive tube-like

feet so, unlike shrimp or other pelagic species, their spatial distribution is not affected by

short term changes in environmental conditions. Second, boats make day trips to spots close

to their home port so it is easy to follow and observe other boats. Most dives occur at a

depth of 30 feet, implying that boats remain close to shore where they can be easily observed

by other boats. Diving at depths greater than 60 feet is both dangerous and less productive.

In addition, urchin divers have to see what they’re harvesting, thus diving at night to avoid

observation by other divers is not an option. Third, visual inspection of the data confirms

that the fleet tends to move as a pack: there are long periods where most of the fleet is

fishing in the same location. This means that an individual captain frequently receives a

clear signal of where his peers believe the best urchin grounds are located.

While it is possible to see where other boats are going, it is difficult to infer how well

another vessel is doing. This is because urchin diving is a quality fishery not a quantity

fishery: the value of a vessel’s catch does not necessarily depend on the number or size of the

urchins harvested but on the quality of the uni contained within the urchins.7 Seeing another

boat with a large quantity of big urchins does not necessarily imply that the load is valuable.
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In other words, the value of a captain’s catch is private and confidential information known

only to the captain and the processor who pays for the catch.

Captains therefore have very strong incentives to pay attention to the location choices

of other captains.8 In fact, the decision about where to fish is very similar to an investment

under uncertainty decision. No one individual knows with certainty the best action to

take but makes a decision based on their private information and any publicly available

information. In the fishing context, publicly available information includes the location

choices of other fishermen. It is clear that there should be some form of location choice

peer effect: fishermen learn by observing the location choices of others and this, in turn,

influences their own location choices. The precise form of learning will depend on a number

of factors but especially on beliefs about others’ beliefs, the timing of decision-making, and

the degree to which actions reveal privately held information.

Based on interviews with urchin captains and a general understanding of urchin diving,

we hypothesize that the following factors play a key role in the decision about where to go

fishing: (i) Where have I made the most money recently? (ii) Which locations do I have more

experience diving at? (iii) What is the weather doing today? And, critically, (iv) where have

I observed other captains fishing? The motivation for including experience in the decision

problem is twofold. Roe content and quality is directly correlated with habitat. Since habitat

remains fairly constant over time, locations that have produced high quality roe in the past

are very likely to produce good roe again in the future. The experience variable captures

the important role of this information, which is separate from recent fluctuations in urchin

abundance and quality. Second, there is some location-specific human capital accumulation:

if a captain is indifferent between two locations in terms of his expected catch value, he is

more likely to go to the location that he has more experience with.

To test for a location choice peer effect, we use data on location choice and catch value

obtained from California Department of Fish and Game (DFG) log books and landings tickets

for the Northern California sea urchin fishery from 1987 to 1999. We restrict our attention to
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the Fort Bragg and Point Arena ports for two main reasons. First, the ports are far apart so

it is fair to treat captains in the two ports as two distinct peer groups (Figure 3). Captains

rarely, if ever, travel far enough that they could observe captains from a port other than

their own. Second, 71% of new captains begin their careers fishing out of either Fort Bragg

or Point Arena. We use the log books and landings tickets to generate most of our variables

of interest: where a captain chooses to go on any given day (this is a dummy variable for

north or south, relative to the captain’s home port), the average choice of his peer group on

that day, his expected catch value in the north relative to the south, the average of his peer

group’s expected catch value in the north relative to the south, how much of his experience

has been in the north relative to the south and how much of his peer group’s experience has

been in the north relative to the south.

We simplify the location choice as the decision to go north or south out of a vessel’s home

port for several reasons. First, it is well documented that vessels in this fishery only go to

patches that are close to their home port (Smith and Wilen, 2003; Smith, 2005). Second,

there are historically productive urchin grounds in close proximity to the north and south

of both ports suggesting that, at any given time, either choice is feasible.9 Third, there are

considerable set-up costs involved in preparing for a dive, therefore boats tend to remain in

the same area for the duration of the day. Finally, interviews with captains further confirmed

that north/south is the most appropriate metric. In Section 5, we test whether our results

are robust to relaxing this assumption and allow for a more diverse choice set.

To generate the variable for where a new captain’s peers go, we calculate the mean

choice of all captains in the same port, excluding the captain under study and any other

new captains. An important consideration is how much variability there is among vessels

going north or south. The vast majority of vessels (73.5%) take trips to both locations but,

importantly for our purposes, the fleet of experienced captains tends to move as a herd: for

most of the days in our sample (52%), the entire fleet travels to the same location (Figure

4). This means that new captains frequently observe very strong signals from their peers.
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To generate a variable for a captain’s expectation of the catch value in the north relative to

the south we assume that all captains begin their careers with a prior belief over the catch

value difference, cN−S, that is distributed Gaussian with mean zero and zero precision10, i.e.

fi,t (cN−S) ∼ N
(
θi,t,

1
τi,t

)
with θi,1 = τi,1 = 0, where i indexes an individual captain and t

indexes days spent fishing. Catch value is simply the dollars earned per diver per day (this

is a common standardization). The assumption of a mean zero prior is a strong one but

justified given that there are productive urchin grounds to both the north and south of each

port and fine-scale information about actual urchin abundance can only be gathered through

diving. We treat the value of the catch that a captain records on a given day as a Gaussian

distributed signal with an unknown mean but a known variance. This allows us to use a

simple Bayesian framework to update the mean and precision of the captain’s prior belief:

θi,t+1 =
τi,tθi,t + ri,tXi,t

τi,t + ri,t
,

is the update rule used for the mean of the captain’s posterior belief and

τi,t+1 = τi,t + ri,t,

is the update rule used for the precision of his posterior belief.11 In terms of notation,

θi,t (θi,t+1) is the mean of the captain’s prior (posterior), τi,t (τi,t+1) is the precision of the

captain’s prior (posterior) belief, ri,t is the precision of the catch value signal received on

day t and Xi,t is the actual catch value signal received. Xi,t is measured in dollars weighted

by the location that the catch occurred at. For example, a catch in the north worth $1,000

is equivalent to Xi,t = 1, 000 and a catch in the south worth $1,000 is equivalent to Xi,t =

−1, 000. We define the precision of the catch value signal to be dependent on its timing

(ri,s = 1, ∀s ≥ t − 20 else ri,s = 0), thus captains place more weight on more recent catch

values. A 20 day time horizon is consistent with both the existing literature (Smith and

Wilen, 2003) and interviews with captains; we also experimented with different cutoffs and
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this did not qualitatively alter our results.12

We also compile data on daily weather conditions (wave height, wind speed and wind

direction) using the National Data Buoy Center.13 We generate a dummy variable for each

possible wind direction (north, south, east and west). Interviews with former captains sug-

gest that, all else being equal, the direction of the wind and waves would influence their

location choice. Unfortunately, we do not have data on wave direction. Since swells tend to

come from the south during the summer (the period during which most of our observations

occur), we would expect a tendency to head south during bigger swells. Weather tends to

be calmer in the morning so it is better to steer against the prevailing wind and swell in the

morning and return with the swell and wind at your back later in the day. The variable for

relative experience in the north is simply the fraction of a captain’s previous trips that have

been to the north. Finally, we define new entrants using three different metrics: any new

captain on his first day, any new captain in his first week and any new captain in his first

month in the fishery. Summary statistics for the three samples are presented in Tables 1, 2

and 3.

3 Empirical Framework

Why is it so challenging to identify peer effects without a source of exogenous peer group

variation? The challenges can be placed in three broad categories: (i) self-selection (ii)

simultaneity and (iii) shared unobservables. The first challenge is that similar individuals

self-select into neighborhoods, groups, professions, etc., making it difficult to disentangle

selection effects from peer effects. The second challenge refers to the fact that an individual

affects her peer group and is simultaneously affected by her peers; the simultaneity of the

interactions makes separating causal impacts extremely difficult. The third challenge is a

variant of the standard endogeneity problem: an individual may imitate her peers because
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of some other unobserved influence that is correlated with the peer group’s behavior. In this

section, we will outline the identification strategy we use to overcome these three challenges.

The proposed strategy relies critically on using the gold rush as a source of peer group

variation.

We start with the issue of self-selection. Clearly, individuals who choose to earn a living

by diving for sea urchins have self-selected into the profession. What is critical for identifi-

cation in our setting is that gold rushers have been incentivized to self-select into a fishery

that they would not normally operate in. The Northern California coast is an extremely

hostile environment to work in compared to Southern California. The water is cold, murky,

and notorious for shark attacks. This is evidenced by the small number of boat captains

working in the fishery before and after the Japanese boom. As outlined in Moffitt (2001),

identification is possible when interventions offer inducements to alter the composition of

peer groups. The Japanese boom clearly offered inducements that altered the composition

of peer groups. Without the Japanese boom, very few (if any) of the gold rushers would have

self-selected into this fishery. Only one of the new captains was a diver already working in

the fishery on another captain’s boat before investing in his own boat. He is excluded from

the sample of gold rush captains.

We now address the issue of simultaneity. Consider the simple linear regression model

y = α + βx + ε where y is the behavior of an individual and x is the behavior of her peer

group. The other variables have the usual interpretations. The error term, ε, captures any

variation in y that is not explained by variation in x and α is an intercept. Now, if the

peer group’s behavior x is directly influenced by the individual’s behavior y then this reverse

causality provides an indirect pathway for the error term ε to be correlated with the regressor,

because unobserved influences on y become unobserved influences on x. If this correlation is

present, then ordinary least squares (OLS) estimation of β will be inconsistent. This is one

of the types of reflection problems referred to in seminal work by Manski (1993, p. 532): “the

problem is similar to that of interpreting the almost simultaneous movements of a person and
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his reflection in a mirror. Does the mirror image cause the person’s movements or reflect

them? An observer who does not understand something of optics and human behaviour

would not be able to tell.” A gold rush allows us to break this simultaneous reflection of

behavior because the social interaction is clearly unidirectional: new entrants (gold rushers)

can learn from observing the location choices of existing captains but existing captains do

not learn anything from observing new entrants.

We now tackle the third challenge of shared unobservables. Manski (1993) identifies three

reasons why agents may imitate the behavior of their peers: correlated effects, exogenous

effects and endogenous effects. Correlated effects refer to agents taking the same action

as their peers because they face a similar environment or have similar characteristics. For

example, all the fish are aggregated in one location so every captain decides to go there,

regardless of what their peers are doing. Exogenous effects refer to a direct causal relationship

between the characteristics of a peer group and the agent’s behavior. For example, a captain’s

peer group may be very macho, causing a self-conscious captain to go to more dangerous

locations. In other words, a captain is influenced by the characteristics of his peer group

not by their actions. Endogenous effects are “true” peer effects: an agent’s behavior literally

varies with the behavior of the peer group. For example, observing a large number of boats

in a particular area directly causes a captain to go to that area. True peer effects are difficult

to identify because of the possibility of correlated or exogenous effects. This is akin to the

standard endogeneity problem faced in analysis of non-experimental data.

A common approach to overcoming endogeneity is to find appropriate instrumental vari-

ables for the endogenous regressor (the peer group’s location choice). Good instruments

would be variables that influence the peer group but we can be certain that they are not

correlated with unobserved influences on the individual under study. Since individuals and

their peers are typically exposed to the same influences, this makes finding appropriate in-

struments almost impossible. This is again where the gold rush is critical. The gold rush

introduces new individuals to each fishing port. These individuals do not know what existing
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fishermen have been catching and where they have been catching it. Thus, we can use in-

formation accrued by existing fishermen in the past, namely catch and historical experience

at different locations, as instrumental variables. This is information that predicts where

existing fishermen go but should be orthogonal to unobserved influences on new entrants

because new entrants are completely unaware of this information. It is, of course, possible

that existing fishermen and new entrants have the same beliefs about where to go, despite

having very different information sets. This would be an example of correlated effects that

our instrumental variables approach could not overcome. However, this is only likely to be

true in two very extreme situations. The first situation is one where the beliefs of exist-

ing captains and new entrants are highly correlated and the private information of existing

captains does not influence their beliefs. This would imply that the information received

from going fishing is essentially worthless. As we will soon see, this is not borne out by the

data. Captains respond rationally to changes in their private information sets, strongly sug-

gesting that new information is changing beliefs. This is essentially the exogenous variation

that we are using to identify a peer effect. Even if new entrants and existing captains have

highly correlated beliefs, as long as the private information of existing captains is affecting

the beliefs of existing captains but not directly affecting the beliefs of new entrants then

the endogeneity problem is overcome. The second situation that might be of concern is

one where the information that existing captains observe causes them to believe the same

thing as new entrants who have not been exposed to the same information. For example, an

existing captain believes A, a new entrant believes B, the existing captain updates on new

information and now believes B, the same belief as the new entrant who has a very limited

information set. This seems unlikely but it remains a possibility. To summarize, gold rushes

allow for the identification of peer effects because they induce self-selection that would not

occur otherwise, they break the simultaneity of decision-making and they create potential

(but not necessarily valid) instrumental variables.

We now outline the model we are going to estimate using the gold rushers as the backbone
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of our identification strategy. We wish to estimate the following as our main (i.e. second-

stage) regression:

yi,p,t︸ ︷︷ ︸
Gold rusher′s

location choice

= fei,p + βȳ−i,p,t︸ ︷︷ ︸
Average location choice

of existing captains

+ x′i,p,tγ + εi,p,t. (1)

This tests for a peer effect from the existing captains to the new captains (the gold rushers).

For new captain i, his peer group of existing captains excludes any other new captains who

have entered the fishery at approximately the same time. The dependent variable yi,p,t is a

binary variable for whether new captain i goes to the north or south of his home port p on day

t, where a value of 1 represents a trip to the north. The location choice yi,p,t is conditional on

both choosing to enter the fishery and choosing to go fishing on day t. The key explanatory

variable ȳ−i,p,t is the average location choice of all the existing captains from the same port

on the same day. In line with the literature on peer effects in other settings (Manski, 1993,

2000; Duflo and Saez, 2002; Mas and Moretti, 2009), we assume a linear peer effect as a best

approximation to the true underlying response function.14 Other explanatory variables (the

vector xi,p,t) include the new captain’s personal catch value history and experience (if they

exist) and a vector of weather variables, namely wind speed and wave height. The regression

includes captain and port fixed effects (fei,p).15 As mentioned earlier, the time horizon, t,

ranges from 1 to 20 depending on whether the sample is restricted to a new captain’s first

day, second day, first week, etc.16 Note that t = 1 is a different calendar date for each new

captain unless they start fishing from the same port on the exact same day.

Although the dependent variable is binary, we present results from estimating Equation

(1) using both ordinary least squares and a probit estimator. The advantage to using OLS is

that we can deal with potential unobservables by using instrumental variables and removing

captain-specific fixed effects by demeaning the data. The obvious drawback is that the error

terms in a linear probability model are distributed Bernoulli and performing hypothesis
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tests based on assuming an underlying Gaussian distribution is not technically correct. This

approach has been adopted elsewhere for the simple reason that, “the estimation of dynamic

panel data models with a discrete dependent variable is essentially an unsolved problem in the

classical statistics literature” (Klaassen and Magnus, 2001, ; p. 501). The advantage to using

an instrumental variables probit estimator is that it is appropriate to assume an underlying

Gaussian distribution and test statistics have the usual interpretation. The disadvantage

is that we can no longer simply difference out time-invariant unobservables when using a

nonlinear model.17

As described above, we need to instrument for the average location choice of the existing

captains to deal with the possibility of correlated or exogenous effects. Our first-stage re-

gression uses the historical catch and experience of existing captains to predict their average

location choice:

ȳ−i,p,t︸ ︷︷ ︸
Average location choice

of existing captains

= fei,p+

 ¯catch−i,p,t

¯experience−i,p,t


′

λ

︸ ︷︷ ︸
Average catch and experience

of existing captains

+ xi,p,t
′ρ+ ui,p,t, (2)

where ¯catch−i,p,t is the average catch of existing captains and ¯experience−i,p,t is their aver-

age experience in the north relative to the south. Our identification strategy rests on the

assumptions that existing captains are not influenced by new captains, that new captains

are unaware of the location of the past catch and experience of existing captains, and con-

sequently this information is statistically independent of any unobserved influences on new

captains.

The instrumental variables approach also provides indirect evidence of whether any iden-

tified peer effect is social learning. We are testing whether the location choice of new captains
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is correlated with the part of the peer group’s location choice that is correlated with impor-

tant information about urchin abundance (i.e. where urchin captains have gone and what

they have caught there). Another way of saying this is that we’re testing whether new en-

trants are behaving in a way that is consistent with information they can not directly observe

but would like to learn. This is not to say that we can disentangle whether new captains

learn from the behavior of existing captains or simply conform with their behavior but it

does indirectly test whether following the herd is a good idea. We do find that those captains

who followed the herd (i.e. made the same choice as the majority of existing captains) were

more likely to have made the right choice on that day.18 For the First Day sample, 82.67%

of the new captains who followed the herd made the right choice, compared to 16.98% of the

captains who did not follow the herd. For the First Week sample, 81.85% of the new captains

who followed the herd made the right choice compared to 22.94% of the captains who did

not follow the herd. For the First Month sample, 83.32% of the new captains who followed

the herd made the right choice, compared to 23.34% of those who chose to not follow the

herd. All of these proportions are statistically different from each other at better than the

1% level.

An important question for our identification strategy is: at what point do new entrants

become existing captains? This presents both an obstacle and an opportunity. It presents

an obstacle in that, as new entrants become more experienced, the assumptions underlying

identification must break down. Our identification strategy is therefore temporally limited

to the period over which existing captains are not influenced by new captains. It presents an

opportunity in that our model is over-identified and we can test whether we lose identification

as new entrants start to influence existing captains. We therefore estimate our regression

model and perform over-identification tests for a range of time horizons: new captains on

their first day in the fishery, their first two days, their first week, their first month, and so

on. The drawback to restricting the time horizon to each new captain’s very first day is a

small sample size (180 observations) and an inability to control for time-invariant differences
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between captains. The benefit, however, is that we can be certain the private information of

existing captains has not been influenced by the past actions of new entrants because the new

entrants have not taken any actions yet. Conversely, the week and month samples allow for

a larger sample size and the ability to control for unobserved differences between captains.

However, we cannot be completely certain that the catch and experience of existing captains

is not beginning to be influenced by the new entrants.

4 Results

We start with the results from running OLS and probit estimation of Equation (1) without

instruments for the three different samples (Tables 4 and 5). The magnitude of the peer effect

is similar across all three samples. If everyone in a new captain’s peer group decides to go

north then this increases the probability that the new captain will go north by 20 to 29

percentage points. The estimated peer effect is not statistically different from zero in the

First Day sample, perhaps due to the small sample size, and is statistically significant at

the 5% level or better in the First Week and First Month samples.19 In addition, OLS

estimation suggests that the strength of the peer effect does not decline as new captains

become more experienced. The coefficients on the other variables are generally consistent

with our expectations, except for the negative coefficient on the relative experience variable

in the first week sample, which is suggestive of strategic experimentation.

Table 6 presents the results from estimating the first stage of the instrumental variables

model for the three different samples. We can see that the peer group responds rationally

to their catch history and experience. The peer group is more likely to go north when the

value of their recent catch in the north is greater than the value of their recent catch in the

south. In addition, if all of the peer group’s experience has been in the north then they are

between 47 and 73 percentage points more likely to go to the north. In all three samples,

at least one of the instruments is statistically significant at the 1 percent level. In terms

of evaluating the overall strength of the chosen instruments, the F statistic on the joint
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significance of the instruments is high as well as the partial R-squared of the instruments

(relative to the overall R-squared), confirming that the instruments are strongly correlated

with the endogenous regressor (Bound et al., 1995). The negative signs on the coefficients for

wind speed and wave height align with information obtained from interviews with captains:

if all else is equal, there is a tendency to go south if strong southerly winds or swells are

expected and vice versa.

Results from estimating the second stage regression are presented in Table 7. In addition,

the results obtained from using a probit estimator instead of ordinary least squares are

presented in Table 8. For all samples, there is a strong peer effect. Not only is the peer

effect strong in a statistical sense, it is very strong in terms of its implications. As an example,

looking at the First Day sample in Column (1) of Table 7, if all of a new captain’s peer group

switch from going south to going north then this is associated with a 73 percentage points

increase in the probability that the new captain will go north. For the First Week sample the

associated change is 89 percentage points but this declines to 50 percentage points for the

First Month sample. This attenuation of the peer effect over time is indirectly supportive

of our earlier assumption that captains have a mean-zero prior over catch distribution when

first entering the fishery.

It is interesting to note how strong the peer effect is relative to a new captain’s private

influences. New captains appear to ignore their personal catch and simply follow the herd.

This is in contrast to results from laboratory experiments which have found that subjects

place too much weight on their private information relative to publicly available sources of

information (Celen and Kariv, 2004). Also, for their first week in the fishery, we observe a

negative correlation between where new captains have gone in the past and where they go on

the day in question (this negative correlation was also a feature of the OLS results in Table

4). We could speculate that this is evidence of strategic experimentation, especially since

the coefficient on this variable has the expected positive sign for the first month sample, but

we cannot rule out other explanations.
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5 Robustness Checks

5.1 Over-identification Tests

We now indirectly test the validity of our instruments. A standard approach to testing

this assumption when the endogenous regressor is over-identified is to use Hansen’s J test

(Hansen, 1982). Over-identification allows us to test (conditional on one of the instruments

being exogenous) the null hypothesis that both of the instruments are exogenous. The

alternative hypothesis is that at least one of the instruments is endogenous. It is important

to note that failure to reject the null does not imply that all of the instruments are valid,

since the test is based on the assumption that at least one of the instruments is valid.

Nevertheless, table 9 confirms that our specifications pass this standard over-identification

test. In all three samples (first day, first week, first month), we fail to reject the null that

the instruments (past catch and experience of existing captains) are uncorrelated with any

unobserved influences on new captains, although we can reject the null at the 10% confidence

level for the first month sample.20

We now go a step further and hypothesize that if our instruments are indeed valid,

then the calculated Hansen’s J statistic should move in the direction of rejecting the null

hypothesis as we dilute the validity of our instruments. In particular, the assumption that

existing captains are not influenced by new captains is likely to be less valid as we increase the

time horizon of our sample size. It is rational for an existing captain to ignore a novice captain

on his first few days on the job. However, any captain with more than a few weeks experience

is probably worth paying attention to. Thus, we should expect the reflection problem to

emerge: existing captains begin to be influenced by new captains so their catch history

and experience become correlated with unobserved influences on new captains implying that

catch history and experience are no longer valid instruments. The results presented in

Table 9 support this hypothesis: as we increase the time horizon, we start to reject the null

hypothesis that both instruments are exogenous. The p-value on Hansen’s J test declines
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monotonically from 0.4 for the first day sample to 0.29 for the first two days sample to 0.1

for the first week sample to 0.09 for the first month sample.

An acute observer might initially think that the monotonic decline in the p-value of

the over-identification test statistic is merely due to the power of the test improving as the

sample size increases, i.e. we fail to reject a false null hypothesis too often with small sample

sizes. To address this concern, we take our largest sample (this is the First Month sample,

which has 2,721 observations) and create 1,000 bootstrapped samples of equal size to our

smallest sample (the 1 day sample with 180 observations). We then perform Hansen’s test of

over-identification on all 1,000 sub-samples and record the associated p-values. A histogram

of the p-values is presented in Figure 5. Although the mean p-value is quite high (0.21),

the median value is low (0.13) as the distribution of values is clearly skewed to the left.

This suggests that sample size plays some role in the decline of the estimated p-value as we

increase the number of days included in the sample but that the main driving force is the

loss of identification.

A similar critique of the conclusion implied by Table 9 is that the test is undersized in

small samples. However, as established in Monte Carlo simulations by Hall and Horowitz

(1996), the standard over-identification test is over-sized in small samples, implying that

we tend to reject a true null too often. In terms of the size of the test, the p-values in

Table 9 should therefore be interpreted as being underestimated, not over-estimated, for the

smaller sample sizes. In short, Hansen’s test confirms the intuition that our identification

assumptions are most credible when new captains are brand new (their first and second days

on the job). Many of the social interactions that make it so hard to cleanly identify peer

effects have not had a chance to happen yet. As new captains become more experienced and

presumably start interacting with existing captains, it appears that the case for identification

starts to break down.21

5.2 Increasing the Spatial Resolution of the Key Variables

Another potential critique of the analysis presented in this paper is that by simplifying
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the location choice of each captain into the decision to go north or south we are biasing our

results in favor of finding a peer effect. For example, if we were to go one step further and

simplify the location choice decision as the decision to go fishing in the ocean or on land

then it would always be true that new captains make the same location choice as their peer

group. Despite the fact that previous research (Smith and Wilen, 2003; Smith, 2005) and

interviews with captains supports the model specification we have assumed, it is important

to address this concern. To this end, we divide the coastline in our study area into eight

discrete but ordinal zones, each of roughly 6 nautical miles in length. Two of the zones are

located directly south of Point Arena, two are located directly north of Point Arena, two are

located directly south of Fort Bragg and two are located directly north of Fort Bragg. Our

choice variable is now a discrete but ordinal variable (0 for the south zone that is farthest

from a captain’s home port, 1 for the south zone that is closest to port, 2 for the north zone

that is closest to port, and 3 for the north zone that is farthest from port). We re-calculate

all of our key variables in terms of the redefined choice set. For example, the catch value and

relative experience variables are now weighted by how far north or south a captain went. It

is extremely important to note that this is a crude and imperfect way to increase the spatial

resolution of our analysis. The aim is perform a basic robustness check and not to develop

an entire new model. Weighting the catch value by how far north or south a captain went

will tend to overweight catch values in the far north and far south but it approximately

captures how beliefs should change as captains experience different catch values in different

locations.22

Summary statistics are presented in Table 10. The location choice now ranges from 0 to

3 and the experience variable still ranges from 0 to 1 but a value of 0 indicates that all of a

captain’s experience has been in the location to the far south of his home port and a value

of 1 indicates that all of a captain’s experience has been in the far north. The results from

estimating our main instrumental variables regression model, Equation (1), with this new

data set are presented in Table 11. Although the coefficients are not directly interpretable,
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we observe a statistically significant peer effect in all three samples. This suggests that

our earlier results are not merely a consequence of aggregating location choices into a binary

variable. However, as noted above, this robustness check is imperfect and these results should

be interpreted with caution. For the First Week sample, the coefficient on wave height is no

longer significant. This may be because wave height strongly influences the decision to go

north or south in the morning but has less of an impact on the decision of how far north or

south to go.

5.3 Alternative Functional Forms for the Peer Effect

We have assumed a linear relationship between the average choice of the peer group and

an individual captain’s choice. However, this may not be realistic. It may be that the mag-

nitude of the difference in the proportion going north and south affects the degree to which

new captains follow existing captains. It could also be the case that new entrants cannot

distinguish between 50% and 51% of the fleet going to a particular area but undoubtedly

can see when almost everyone is going north or south. To address this concern, we model

the peer effect using some potentially more realistic mechanisms. First, instead of represent-

ing the behavior of the peer group as the arithmetic mean of the group’s choices, we use a

simple convex function to capture deviations from the mean: the peer effect variable is now:

(ȳ−i,p,t)
2 − E [ȳ−i,p,t]. Using this quadratic function as our peer effect variable results in a

larger estimated coefficient on the peer effect in all three samples. For the first day sam-

ple, the coefficient increases from 0.7335 to 0.9473, for the first week sample the coefficient

increases from 0.8871 to 1.1416, and for the first month sample it increases from 0.4960 to

0.5835 (see Table 12 for detailed results). In all cases, we obtain similar first stage results to

Table 6 with F statistics all greater than 10.

As a further exploration of alternative functional forms, we created a new peer effect

variable that attempts to capture the difficulty new captains may have in detecting small

deviations in the behavior of the fleet. We label this new peer effect variable the “All or

Almost All” peer effect and generate it as follows:
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y∗−i,p,t = 0 if ȳ−i,p,t ≤ 0.25; 0.5 if 0.25 < ȳ−i,p,t < 0.75; 1 if ȳ−i,p,t ≥ 0.75.

This new variable attempts to capture the idea that captains can easily distinguish between

a peer group that goes "all or almost all south", "mixed", and "all or almost all north",

but perhaps have difficulty distinguishing between intermediate states. Results using this

recoded variable as our peer effects variable are presented in Table 13. The estimated peer

effect coefficients are similar in magnitude to those in Table 7 but the standard errors and the

associated p-values are smaller, suggesting that this alternative specification might be more

accurately capturing the type of peer group information that new captains are responding

to. Reassuringly, all three functional forms for the peer effect produce similar results with

a statistically significant correlation between peer location choice and individual location

choice for all three time horizon samples.

6 Conclusion

Despite its importance, estimating the actual magnitude of peer effects in natural re-

source settings has remained elusive. Reduced-form approaches to estimation are becoming

increasingly popular in resource economics (Abbott and Wilen, 2010) and we contribute to

this literature with an identification strategy that can be implemented using readily avail-

able data.23 Gold rushes provide quasi-experimental peer group variation that can be used

to estimate and study peer interactions. We have implemented the strategy for a Califor-

nian fishery and found strong evidence of peer effects. Peer group location choices are an

important influence on individual location choice.

Post-estimation diagnosis suggests that the assumptions underlying identification are

robust when new entrants are very inexperienced but the classic hurdles to identification

emerge as new entrants become more experienced, potentially influencing their peers. This
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highlights: (i) the importance of finding legitimate sources of identification for estimating

peer effects and, (ii) the danger in assuming that observed correlations in behavior provide

evidence for peer interactions. Despite these caveats, the results demonstrate that peer

effects are important to understanding resource extraction patterns and can clearly affect

policy outcomes (see, for example, recent work by Felthoven et al. (2014) on the impact of

peer effects on the Bering Sea Crab Rationalization Program). Peer effects may be even more

critical in fisheries where the target species is highly mobile or in other resource extraction

settings. A fruitful area of future research would be to examine similar data in other settings.
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Tables

Table 1: Summary Statistics for First Day Sample
Variable Obs Mean Std. Dev. Min Max
New captain’s location choice 180 0.261 0.440 0 1
Peer group’s location choice 180 0.260 0.212 0 1
Peer group’s recent catch ($000s) 180 -0.217 0.188 -0.985 0.471
Peer group’s historical experience 180 0.256 0.125 0 0.771
Wind speed (m/s) 180 4.732 2.138 1.342 10.979
Wave height (m) 180 1.794 0.529 0.756 3.225

Table 2: Summary Statistics for First Week Sample
Variable Obs Mean Std. Dev. Min Max
New captain’s location choice 859 0.249 0.433 0 1
Peer group’s location choice 859 0.257 0.196 0 1
New captain’s recent catch ($000s) 859 -0.088 0.354 -1.957 1.492
New captain’s historical experience 859 0.309 0.360 0 1
Peer group’s recent catch ($000s) 859 -0.225 0.197 -2.173 0.757
Peer group’s historical experience 859 0.252 0.116 0 0.771
Wind speed (m/s) 859 4.722 2.233 1.321 11.388
Wave height (m) 859 1.723 0.492 0.756 3.225

Table 3: Summary Statistics for First Month Sample
Variable Obs Mean Std. Dev. Min Max
New captain’s location choice 2,721 0.265 0.441 0 1
Peer group’s location choice 2,721 0.268 0.204 0 1
New captain’s recent catch ($000s) 2,721 -0.144 0.428 -3.109 2.282
New captain’s historical experience 2,721 0.281 0.342 0 1
Peer group’s recent catch ($000s) 2,721 -0.216 0.201 -1.823 1.014
Peer group’s historical experience 2,721 0.255 0.120 0 1
Wind speed (m/s) 2,721 4.628 2.168 1.192 12.939
Wave height (m) 2,721 1.703 0.509 0.738 3.950
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Table 4: OLS Regression Results
(1) (2) (3)

First Day First Week First Month
Peer group’s location choice 0.2502 0.2061*** 0.2379***

(0.1879) (0.0790) (0.0493)
New captain’s catch history - 0.0119 0.0136

(0.0382) (0.0483)
New captain’s relative experience - -0.1890*** 0.1553**

(0.0374) (0.0629)
Wind speed weighted by direction -0.0361** 0.0003 -0.0006

(0.0164) (0.0084) (0.0049)
Wave height -0.0331 -0.0728** -0.0763***

(0.0694) (0.0334) (0.0197)
Wind direction dummies Yes Yes Yes
Captain Fixed Effects No Yes Yes
Port Dummy Yes Yes Yes
R-squared .15 0.13 0.26
Observations 180 859 2721

Notes: Dependent variable is the location choice of a new captain. Robust standard errors clustered
by captain are in parentheses. Each column represents a different sample. Column (1) restricts
the sample to each new captain’s first day in the fishery. Column (2) restricts the sample to each
new captain’s first week in the fishery. Column (3) restricts the sample to each new captain’s first
month in the fishery. * indicates statistically significant at the 10% level; ** indicates statistically
significant at the 5% level; *** indicates statistically significant at the 1% level.
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Table 5: Probit Regression Results
(1) (2) (3)

First Day First Week First Month
Peer group’s location choice 0.2333 0.1974** 0.2851***

(0.1739) (0.0788) (0.0438)
New captain’s catch history - 0.0044 0.0206

(0.0503) (0.0264)
New captain’s relative experience - 0.5435*** 0.6333***

(0.0491) (0.0341)
Wind speed weighted by direction -0.0469** -0.0035 -0.0015

(0.0211) (0.0095) (0.0056)
Wave height -0.0373 -0.0651* -0.0694***

(0.0721) (0.0340) (0.0195)
Wind direction dummies Yes Yes Yes
Captain Fixed Effects No No No
Port Dummy Yes Yes Yes
R-squared 0.14 0.28 0.31
Observations 180 859 2721

Notes: Dependent variable is the location choice of a new captain. Marginal effects reported.
Standard errors are in parentheses. Each column represents a different sample. Column (1) restricts
the sample to each new captain’s first day in the fishery. Column (2) restricts the sample to each
new captain’s first week in the fishery. Column (3) restricts the sample to each new captain’s first
month in the fishery. * indicates statistically significant at the 10% level; ** indicates statistically
significant at the 5% level; *** indicates statistically significant at the 1% level.
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Table 6: First Stage Regression Results
(1) (2) (3)

First Day First Week First Month
Peer group’s catch history 0.4017*** 0.0732 0.1656***

(0.1277) (0.0612) (0.0395)
Peer group’s relative experience 0.4656* 0.7337*** 0.5517***

(0.2386) (0.1373) (0.0772)
New captain’s catch history - -0.0064 0.0381*

(0.0250) (0.0213)
New captain’s relative experience - 0.0040 0.0197

(0.0261) (0.0234)
Wind speed -0.0093 -0.0082* -0.0049**

(0.0066) (0.0043) (0.0022)
Wave height -0.0677*** -0.0511*** -0.0511***

(0.0253) (0.0150) (0.0085)
Wind direction dummies Yes Yes Yes
Captain Fixed Effects No Yes Yes
Port Dummy Yes Yes Yes
R-squared 0.45 0.17 0.20
Observations 180 845 2708
F-stat on Instruments 23.9 21.4 106.31
Partial R-squared of excluded instruments 0.3 0.13 0.14

Notes: Dependent variable is the average location choice of a new captain’s peer group. Robust
standard errors clustered by captain are in parentheses. Each column represents a different sample.
Column (1) restricts the sample to the behavior of the peer group of new captains on each new
captain’s first day in the fishery. Column (2) restricts the sample to the behavior of the peer group
of new captains during each new captain’s first week in the fishery. Column (3) restricts the sample
to the behavior of the peer group of new captains during each new captain’s first month in the
fishery. * indicates statistically significant at the 10% level; ** indicates statistically significant at
the 5% level; *** indicates statistically significant at the 1% level.
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Table 7: Second Stage Regression Results
(1) (2) (3)

First Day First Week First Month
Peer group’s location choice 0.7335** 0.8871*** 0.4960***

(0.3479) (0.3059) (0.1365)
New captain’s catch history - -0.0037 0.0013

(0.0441) (0.0441)
New captain’s relative experience - -0.1784*** 0.1480**

(0.0426) (0.0616)
Wind speed -0.0293* 0.0042 0.0009

(0.0172) (0.0092) (0.0050)
Wave height 0.0184 -0.0310 -0.0620***

(0.0778) (0.0366) (0.0205)
Wind direction dummies Yes Yes Yes
Captain Fixed Effects No Yes Yes
Port Dummy Yes Yes Yes
Observations 180 845 2708

Notes: Dependent variable is the location choice of a new captain. Robust standard errors clustered
by captain are in parentheses. Each column represents a different sample. Column (1) restricts
the sample to each new captain’s first day in the fishery. Column (2) restricts the sample to each
new captain’s first week in the fishery. Column (3) restricts the sample to each new captain’s first
month in the fishery. * indicates statistically significant at the 10% level; ** indicates statistically
significant at the 5% level; *** indicates statistically significant at the 1% level.
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Table 8: IV Probit Results
(1) (2) (3)

First Day First Week First Month
Peer group’s location choice 0.6892** 0.3887** 0.4114***

(0.3007) (0.1645) (0.0868)
New captain’s catch history - 0.0065 0.0218

(0.0505) (0.0264)
New captain’s relative experience - 0.5298*** 0.6210***

(0.0503) (0.0348)
Wind speed -0.0414* -0.0016 -0.0009

(0.0232) (0.0096) (0.0056)
Wave height 0.0140 -0.0531 -0.0634***

(0.0742) (0.0352) (0.0198)
Wind direction dummies Yes Yes Yes
Captain Fixed Effects No No No
Port Dummy Yes Yes Yes
Observations 180 859 2721

Notes: Dependent variable is the location choice of a new captain. Marginal effects reported.
Standard errors are in parentheses. Each column represents a different sample. Column (1) restricts
the sample to each new captain’s first day in the fishery. Column (2) restricts the sample to each
new captain’s first week in the fishery. Column (3) restricts the sample to each new captain’s first
month in the fishery. * indicates statistically significant at the 10% level; ** indicates statistically
significant at the 5% level; *** indicates statistically significant at the 1% level.

Table 9: Over-Identification Tests
p-value for Hansen’s J test

First Day Sample 0.40
First Two Days Sample 0.29
First Week Sample 0.10
First Month Sample 0.09

Table 10: Summary Statistics for Ordered Sample for First Month
Variable Obs Mean Std. Dev. Min Max
New captain’s choice 2,329 1.085 0.766 0 3
Peer group’s choice 2,329 1.078 0.397 0 3
New captain’s catch history 2,329 -0.090 0.234 -1.622 0.770
New captain’s relative experience 2,329 0.374 0.194 0 1
Peer group’s catch history 2,329 -0.145 0.092 -1.251 0.506
Peer group’s relative experience 2,329 0.345 0.074 0 0.667
Wind speed 2,329 4.646 2.171 1.192 12.939
Wave height 2,329 1.714 0.509 0.738 3.950
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Table 11: Second Stage Ordered Regression Results
(1) (2) (3)

First Day First Week First Month
Peer group’s location choice 1.0865** 1.1917** 0.3991**

(0.4563) (0.5650) (0.1798)
New captain’s catch history - 0.0218 -0.0250

(0.2329) (0.1426)
New captain’s relative experience - -0.6606*** 0.0375

(0.2360) (0.1775)
Wind speed -0.0095 0.0081 -0.0045

(0.0393) (0.0195) (0.0101)
Wave height 0.2893 0.0992 -0.0888**

(0.1826) (0.1234) (0.0420)
Wind direction dummies Yes Yes Yes
Captain Fixed Effects No Yes Yes
Port Dummy Yes Yes Yes
Observations 156 721 2329
Hansen’s J p-value 0.3422 0.8227 0.6423

Notes: Robust standard errors clustered by captain are in parentheses. Dependent variable is the
location choice of a new captain. Each column represents a different sample. Column (1) restricts
the sample to each new captain’s first day in the fishery. Column (2) restricts the sample to each
new captain’s first week in the fishery. Column (3) restricts the sample to each new captain’s first
month in the fishery. * indicates statistically significant at the 10% level; ** indicates statistically
significant at the 5% level; *** indicates statistically significant at the 1% level.
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Table 12: Second Stage Regression Results Assuming Quadratic Peer Effect
(1) (2) (3)

First Day First Week First Month
Peer group’s location choice 0.9473* 1.1416** 0.5835***

(0.4955) (0.4517) (0.1710)
New captain’s catch history - 0.0025 0.0066

(0.0438) (0.0447)
New captain’s relative experience - -0.1719*** 0.1524**

(0.0444) (0.0623)
Wind speed -0.0308* 0.0035 0.0000

(0.0170) (0.0094) (0.0050)
Wave height -0.0008 -0.0583* -0.0788***

(0.0783) (0.0344) (0.0201)
Wind direction dummies Yes Yes Yes
Captain Fixed Effects No Yes Yes
Port Dummy Yes Yes Yes
Observations 180 845 2708

Notes: Dependent variable is the location choice of a new captain. Robust standard errors clustered
by captain are in parentheses. Each column represents a different sample. Column (1) restricts
the sample to each new captain’s first day in the fishery. Column (2) restricts the sample to each
new captain’s first week in the fishery. Column (3) restricts the sample to each new captain’s first
month in the fishery. * indicates statistically significant at the 10% level; ** indicates statistically
significant at the 5% level; *** indicates statistically significant at the 1% level.
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Table 13: Second Stage Regression Results Using “All or Almost All” Peer Effect Variable
(1) (2) (3)

First Day First Week First Month
Peer group’s location choice 0.6991** 0.6924*** 0.4505***

(0.3149) (0.2297) (0.1294)
New captain’s catch history - 0.0073 0.0001

(0.0409) (0.0435)
New captain’s relative experience - -0.1505*** 0.1548**

(0.0456) (0.0631)
Wind speed -0.0240 0.0059 0.0001

(0.0177) (0.0092) (0.0051)
Wave height 0.0298 -0.0435 -0.0535**

(0.0785) (0.0347) (0.0219)
Wind direction dummies Yes Yes Yes
Captain Fixed Effects No Yes Yes
Port Dummy Yes Yes Yes
Observations 180 845 2708

Notes: Dependent variable is the location choice of a new captain. Robust standard errors clustered
by captain are in parentheses. Each column represents a different sample. Column (1) restricts
the sample to each new captain’s first day in the fishery. Column (2) restricts the sample to each
new captain’s first week in the fishery. Column (3) restricts the sample to each new captain’s first
month in the fishery. * indicates statistically significant at the 10% level; ** indicates statistically
significant at the 5% level; *** indicates statistically significant at the 1% level.
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Figures

Figure 1: Nikkei Index and Dollar-Yen Exchange Rate
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Notes: Solid line indicates the monthly average closing price for the Nikkei 225 stock index, dashed
line is the monthly average US Dollars for one Japanese Yen exchange rate Yen (Sources: Yahoo!
Finance and Federal Reserve Bank of St. Louis).
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Figure 2: The “Blue Water Gold Rush” in Northern California
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Notes: The dashed line shows the total number of boats fishing in the Northern California sea
urchin fishery each year from 1988 to 1999. The solid line shows the number of new entrants to the
fishery each year.
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Figure 3: Map of the Study Area

Notes: Map showing the major urchin ports in Northern California and the location of Buoy Station
46014. Bodega is located approximately 70 miles north of the city of San Francisco.
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Figure 4: Histogram of Peer Group’s Location Choice

0
10

20
30

P
er

ce
nt

0 .2 .4 .6 .8 1
Peer group’s location choice

41



Figure 5: Histogram of p-values for Bootstrapped Samples
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Notes

1In the words of Moffitt (2001, p. 49) : “Interventions that forcibly reassign group membership or that

offer inducements to do so voluntarily alter the composition of groups without changing the fundamentals

for any individuals and hence can identify the existence of social interactions by whether the population

outcomes within groups are affected.”

2Many resource extraction decisions are akin to an investment under uncertainty decision. No one ex-

tractor knows with certainty the best location to go to but makes a decision based on their information set.

Thus, location choices indirectly reveal individual information sets. Extractors can learn by observing the

location choices of others and this, in turn, influences their own location choices.

3There is a considerable literature in fisheries economics on search behavior and location choice but this

literature has not focused on peer interactions (Eales and Wilen, 1986; Mistiaen and Strand, 2000; Smith,

2000; Marcoul and Weninger, 2008). van Putten et al. (2012) provide an excellent overview of the literature

on fishing fleet dynamics and location choice. Some recent papers have studied how fishers respond to the

behavior of others, but not in the sense of a true peer learning effect. Haynie et al. (2009) study coercion

and cooperative behavior among peers to avoid by-catch hotspots. Abbott and Wilen (2011) find evidence

that captains are aware of the byatch externality they impose on their peers and take steps to reduce this.

A recent paper by Hicks et al. (2012) examines responses to peer behavior but within the context of “safety

in numbers” or congestion effects, not in terms of learning.

4To date, the only published study using a reduced from approach that we are aware of is Lin (2009).

Lin analyzes whether the exploration decisions made by the owner of an oil tract depend on the decisions

of firms owning neighboring oil tracts. Her approach exploits an unusual feature of federal oil lease sales (5

year deadlines) to overcome endogeneity concerns but she does not find any peer effects.

5 There were no binding limits on entering the fishery during this period.

6Mattison et al. (1976) estimate that red sea urchins within a kelp forest move on average 7.5cm per

day. Dean et al. (1984) find that aggregations of red sea urchins, if they are mobile, move about 2 meters

per month. Harrold and Reed (1985) find similarly slow rates of movement within kelp forests but observed

movement rates as high as 80cm per day at barren sites. Urchins in barren sites tend to be of little interest

to commercial divers because of their poor roe content. Congestion of boats at a particular location is not a

major concern. Boats are small (22--29 feet) and can easily set up next to each other and fish the same reef

or kelp bed. However, in theory, any location can become too congested and it is important to note that

we do not specifically address this potential concern in our analysis. See work by Timmins and Murdock

(2007); Bayer and Timmins (2005, 2007); Hicks et al. (2012) on how to incorporate congestion effects into
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travel cost and locational sorting models.

7As an illustrative example: in 2006, one urchin diver in California landed a total of 92,993 lb. in the year

for a cumulative value of $75,506 while in the same year, another diver landed over twice as many urchins

(201,762 lbs) but earned less money ($63,097).

8In particular, new captains have strong incentives to pay attention to experienced captains since seasoned

captains are more productive than new entrants. A regression of catch value on experience, including

appropriate controls, produces a positive and statistically significant coefficient for the experience variable.

As an illustrative example the mean catch value for captains with less than 100 days of experience is $608.82

whereas the mean catch value for captains with more than 100 days of experience is $659.79 (p<0.001).

9To illustrate this point, the average catch for experienced captains in our sample is $598.48 if they go

south and $611.44 if they go north (p=0.11 on a t-test comparing means).

10Precision is the inverse of variance.

11The Gaussian family of distributions is conjugate to itself: a Gaussian distributed prior updated on a

Gaussian distributed signal with a known variance gives a Gaussian distributed posterior.

12It is important to note that we have deliberately chosen the precision of the catch value signal so that

each captain’s posterior belief is essentially a 1 month backward looking average. This is done to match

the work of Smith and Wilen (2003, p. 192): “Expected catch is a patch-specific rolling 1-month backward

looking average. These proved to be best fit in our preliminary specification tests.” The precise value of ri,t

doesn’t actually matter since it drops out of the formula for the captain’s posterior belief; we could have

chosen any value greater than zero and the updated beliefs would be exactly the same. For a discussion of

the various approaches to expectations formations in fisheries models and the presentation of a more nuanced

model that allows for information sharing see Abbott and Wilen (2011).

13We used Station 46014 which is located at 39.22° N, 123.97° W, close to the main urchin harvest areas

(see Figure 3).

14 Note that we are assuming that each new entrant treats all the members of the group of existing captains

the same. It could be the case that new entrants pay more attention to some peers than others (such as

highliners) and this would make for an interesting extension of our analysis.

15We introduce fixed effects to allow for the possibility of correlation between any time-invariant unobserved

effects and the observed explanatory variables. For example, unobserved preferences over the two locations

are likely to be correlated with a captain’s relative experience at the two locations.

16A week is defined as four days since the fishery is generally closed for three days a week in the summer.

A month is defined as twenty days.

17It’s also important to note that maximum likelihood estimates from a nonlinear fixed effects model
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with small T and large n (a few days of observations and a large number of fishermen as is the case in

this paper) are biased and inconsistent (Greene, 2004). Solutions to this problem have been proposed (see,

for example, the Chamberlain (1980) proposal to use random effects) but we follow Greene’s advice that

“ignoring heterogeneity (in a probit model) is not necessarily worse than using the fixed effects estimator to

account for it. But using the random effects estimator is worse” Greene (2004, p. 100).

18We define the “right choice” as going to the location with higher mean catch value for experienced

captains on that day. This is obviously a very crude measure of which location is the better choice.

19The estimated standard errors have been adjusted to allow for potential heteroskedasticity and within-

captain correlation. For example, error terms could be larger on new captains’ first days compared to their

third days and certain captains could have larger error terms on average than others. The variance-covariance

matrix is adjusted using the weights proposed by Rogers (1993), which is based on Huber (1967).

20We also report the results from estimating our model for a new captain’s first two days.

21As a further robustness check, we tested our assumption that existing captains ignore new captains by

running a regression of the peer group’s choice on the choice of the new captains. Identification is only

possible for the one day sample and we find that the estimated peer effect is extremely small (0.007) and

not statistically different from zero. This supports our identification strategy but it should be noted that

the failure to reject the null may be due to a lack of statistical power.

22As an illustrative example, a catch of $1,000 in the far south gets a value of -1,000 whereas the same

catch in the near south gets a value of -500. The intuition is that the more negative the captain’s belief, the

more likely he is to go far south (0) instead of near south (1) and the the more positive his belief, the more

likely he is to go far north (4) instead of near north (3).

23Despite the rising popularity of reduced-form approaches, it is important to emphasize that Bayesian

techniques have been less frequently utilized in the economic analysis of fisher behavior than might be

appropriate.
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