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Abstract

Some predict that climate change will decrease average crop yield and increase yield
variability. While the first effect, as well as possible adaptation strategies, have been
studied extensively, the second is less well understood and the topic of this paper. A
unique feature of commodity crops is that they can be stored between periods, thereby
allowing storage to smooth production shocks across time. We pair a rational competi-
tive storage model with a statistical analysis linking global production of the four major
commodity crops (maize, wheat, rice and soybeans) and climate forecasts from 16 global
climate models. The rational storage model predicts a doubling of average storage levels
by 2050, slightly raising average prices to cover higher storage losses, but at the same
significantly reducing price variability compared to a storage rule that is optimal under
past yield distributions. Storage market responses to future yield variability greatly
mitigate potential welfare losses of greater production volatility.
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1 Introduction

International food prices have been rising since 2002, with record high spikes in the FAO

Food Price Index in 2008 and again 2011. Prices signal resource abundance, with high lev-

els indicating scarcity and high volatility reflecting a misallocation of resources across time.

Although large price fluctuations may go unnoticed by consumers in developed countries,

they can be devastating for poor consumers in less-developed areas who spend a large share

of household income on raw staple grains and oil seeds. 1 Weather anomalies have played

a clear role in recent price fluctuations (Abbott et al. [2011]) and mounting evidence indi-

cates that climate change will continue to adversely influence agricultural crop yields and

cause greater year-to-year variability (IPCC [2007], Schlenker and Lobell [2010], Urban et al.

[2012]). Recent research has begun to consider potential effects of climate change on food

prices (Diffenbaugh et al. [2012]), but without accounting for adaptive responses in storage

behavior. Some policy makers have advocated for strategic grain stockpiles to address price

volatility, but such policies should first account for the likely scale and effectiveness of market

responses.2

Competitive storage theory stipulates that inventories are driven by weather-related vari-

ations in crop yields. Positive yield shocks cause prices to decline, and lead to accumulation

of inventories since prices are low relative to expected future prices. Negative shocks cause

prices to spike, giving an opportunity for competitive storers to divest their inventories. Thus,

1The view that food price volatility can be harmful to the poor may seem contrary to standard economic
theory, in which utility is convex in prices thereby implying that consumers prefer variable prices over prices
stabilized at their arithmetic mean (Waugh [1944], Massell [1969], Samuelson [1972]). Following this basic
theory, it has been recently argued that price volatility is irrelevant with regard to poverty and food security
— that only high price levels are important (Barrett and Bellemare [2011]). However, poor consumers are
typically underinsured, and even a short period of undernourishment can have sustained effects on health,
productivity and survival (Dawe and Timmer [2012]). Other research suggests high food prices might cause
civil instability (Lagi et al. [2011]). Higher volatility increases the odds that critical price thresholds are
exceeded.

2In September of 2012, French president Fracois Hollande launched a global campaign to create strategic
stockpiles of agricultural commodities aiming at taming food price volatility.
http://www.reuters.com/article/2012/09/11/us-france-grain-hollande-idUSBRE88A1C220120911.
Accessed: July 17, 2013.
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competitive storage markets act to smooth consumption in the face of randomly fluctuating

supply, although we might imagine situations where the competitive equilibrium would not

quell volatility as much as desired.

In a similar vein, storage can act to smooth consumption in the face of cyclical or secularly

rising or falling demand or supply. Historically, yields have trended up, just slightly faster

than population and demand growth. If the secular decline in price were generally anticipated

in advance, it would have generally discouraged storage relative to the stationary case. In

practice, although real prices have trended slightly downward over the long run, the trend

is gentle enough that commodity price modeling often treats the system as stationary, as if

secular increases in demand and supply have been anticipated and equal.

Looking forward, it is becoming harder to justify the idea that supply will necessarily

grow at a pace that is greater than or equal to demand. Our aim here is to therefore examine

competitive storage and price dynamics within a system where supply does not grow as

quickly as demand, and supply simultaneously grows more volatile. We use this model to

investigate two key questions: (1) To what extent would an anticipated secularly diminishing

trend in yield show up in prices today via anticipatory storage adjustments? (2) How well

can market-induced storage adjustments quell the influence of rising yield variability on price

variability?

We calibrate anticipated changes in crop yield distributions by forecasting from a recent

global statistical analysis of weather and crop yields of the world’s four most prevalent staple

food commodities — maize, rice, soybeans and wheat — using projections from 16 climate

models (Lobell et al. [2011]). These projections do not account for some kinds of long-run

potential adaptation. And surely there are a range of possibilities that lie outside the span of

the sixteen climate models and weather draws we consider. Still, we believe this calibration

provides some empirical basis for the scale of gradual impacts we might expect, and lets us

see how competitive storage markets might account for those changes as they happen.
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Given our projected changes in yield distributions, we solve for dynamic competitive stor-

age market equilibria, which gives a unique solution for optimal storage and planned produc-

tion as a function of food availability for each year along an adjustment path. These functions

implicitly determine price as a function of the stochastic yield outcome, and thereby allow us

to simulate the time paths of price, consumption, production and storage outcomes, as well as

producer and consumer surpluses. These time paths of prices and surpluses are compared to

those simulated using a stationary yield distribution, as well as a case using the non-stationary

distribution but without adaptive changes in the storage rule.

This is the first attempt to calibrate a complete stochastic, dynamic equilibrium path for

food commodity prices under climate change, taking into account secularly divergent growth

of demand and supply, plus changing production volatility. In this way our approach also

differs from previously used storage models that analyze stable demand and stationary yield

distributions (Deaton and Laroque [1995], Williams and Wright [1991], Cafiero et al. [2011]).

As with any forecasting exercise, this analysis has limitations. Advances in agricultural

technology have led to marked increases in productivity in the last half-century, and we

do not account for adaptation of technologies other than storage. Also, our main results

exclude CO2 fertilization effects, however we consider results with crop-model-based CO2

effects in a sensitivity analysis. While all of these would tend to counteract the downward

pressure on agricultural yield and upward pressure on prices, we have already seen yield growth

begin to slow for some crops, for example, rice (Dobermann et al. [2004], Auffhammer et al.

[2006]). On the demand side, our analysis also abstracts from trends such as population and

economic growth. In sum, these assumptions are equivalent to an assumption that supply-

side and demand-side changes would, in the absence of climate change, balance each other

out, an assumption that is implicit in much of the earlier literature on commodity prices. In

consideration of these caveats, our primary intention is not to draw specific conclusions about

price forecasts in the distant future, but rather to emphasize salient features of an adaptive
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dynamic pricing system that are robust to a wide range of parameters and expectations.

2 Projections of Future Crop Yields

Projections indicate that climate change will continue to exert downward pressure on the

global mean yield and simultaneously increase yield variability relative to a situation without

climate change (Figure 1). These projections are based on yield-climate response functions

for corn, rice, soy, and wheat estimated in Lobell et al. [2011]. These projections remove

the prevailing trend in yield due to technological change and should therefore be interpreted

relative to a situation without climate change, not necessarily relative to global yields realized

in the year 2000. Since historical prices appear to be stationary or nearly so, the baseline

assumption is that continued technological advance will equal demand growth from rising

population and income.

To derive yield-climate response functions, historic yield shocks (deviations from a quadratic

time trend) were regressed against a quadratic function of temperature and precipitation. A

block bootstrap procedure was used to estimate the parameter distributions. We combine

the first 100 bootstrap replications for each of the four crops with 120 years (1961-2080) of

weather output from 16 GCMs, thus constructing 1,600 hypothetical 120-year time-series for

each crop.3 Using the conversion factors from Williamson and Williamson [1942], we convert

the yield values to calories and aggregate them to obtain global caloric yield. We express this

in units of number of persons fed for a year per one hectare of harvested land, assuming an

average daily diet of 2,000 calories, or 730,000 per year; total production will be expressed in

terms of billions of persons fed for a year.

The variance of the predicted values is lower than the actual variance because it excludes

residual variance. To correct this bias, we add the residual variance from the regressions to the

projections. Starting with global yield data for 1961-2009 from the FAO statistical database,

3We hold year fixed at 2000, so our yield data are weather-induced deviations from average yield in 2000.
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we detrend both series, fitting log-yield to a quadratic time trend. We then use the difference

in trend values for the year 2000 to adjust the mean value for each year of predicted values.

Then we add the difference between the actual variance and the predicted variance for the

overlapping years (1961-2009) (SDobserved − SDpredicted.) This calculation assumes that the

residual variance remains constant.4

Using adjusted yield variances, we generate a yield distribution for each year from 2000-

2080 (T = 0 for the year 2000), using a discrete approximation of a normal distribution with

mean equal to the mean across the 1,600 predicted observations for the corresponding year,

and variance equal to the mean of the rolling variance of the deviations for each of the 1,600

series. The projections indicate mean yield decreases almost 7%, from about 10.75 persons

per year per hectare in 2000 to about 10 in 2050, while the standard deviation in the baseline

case increases 15%, from about 0.233 in 2000 to about 0.269 in 2050.

Regression-based predictions of future yield do not account for the positive effect of CO2

on crops. For this and other reasons, it is possible to anticipate future yield distributions

with higher mean or lower variability than our estimates. It is thus useful to investigate the

two effects separately as well as jointly. To consider mean and variance effects separately, we

simulate two additional sets of future yield data. The first holds the coefficient of variation

fixed at the 2000 level and projects only the predicted mean yield; the second holds mean

yield constant, and projects the increasing coefficient of variation forecast of the model.

3 Storage and Commodity Prices

To connect projected climate-induced shifts in growing conditions to prices, we use a com-

petitive storage model. The competitive storage model has a long history in the literature

on commodity price behavior, starting with seminal work by Gustafson [1958]. This arti-

4Another way to do this would be to scale the forecasted yields by (SDobserved/SDpredicted). The additive
adjustment is more conservative so we focus the presentation on these results.
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cle lays the foundation for the theory of optimal storage and demonstrates that in seeking

opportunities for intertemporal arbitrage, competitive storage can smooth the effects of pro-

duction risk. The resulting time path of storage and commodity prices maximizes social

welfare, measured as the present value of producer and consumer surplus (Scheinkman and

Schechtman [1983]). Later, Williams and Wright [1991] presents a thorough exploration of

the economic implications of the storage model. The authors extend the storage model in

multiple directions, exploring the differences between storage models for raw materials versus

finished goods, the interaction between storage and trade, implications of market power, the

incorporation of new information, government intervention, and assert that the qualitative

features of the price behavior of several important commodities are consistent with the model.

However, in each of these cases the analysis focuses on comparative statics of alternative sta-

tionary environments. In our study, rather than compare alternative climate equilibria, we

focus instead on the broader dynamic implications of the gradual adjustment path from one

climate to another.

Although the theory of competitive storage has been widely recognized and embraced

(Williams and Wright [1991]; Deaton and Laroque [1992, 1995, 1996]; Cafiero et al. [2011])

some have challenged its empirical validity. Deaton and Laroque [1992, 1995, 1996] pioneered

econometric methods for estimating the storage model using only price data. These studies

present a wealth of empirical evidence demonstrating that speculative storage replicates key

features of commodity prices, like long periods of stable prices interspersed with relatively

short periods of volatile, upward spikes. A key criticism is that while storage causes prices to

become more autocorrelated, the stationary model is incapable of generating the high degree

of autocorrelation typically observed in commodity price dynamics. Cafiero et al. [2011],

aided by almost two decades of increased computational power, reassess the relevance of the

storage model and demonstrate that with a more precise estimate of the stockout price, the

storage model can explain the most prominent features of the dynamics of commodity prices,
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including high autocorrelation, although their analysis does involve a less elastic demand

curve. There is also a large standard error for autocorrelation coefficients with time series of

reliable historical length (50-60 years).

The competitive storage model assumes the efficient market hypothesis (an absence of

arbitrage) can reasonably characterize commodity markets. In some cases, episodes of price

volatility may seem unrelated to fundamentals of market supply and demand. However some

uncertainties, like current inventories, future demand and trade policies, can be difficult to

quantify, and these factors are typically assumed known. In the standard model, uncertainty

derives only from stochastic weather and production. There are also a few documented

cases where large-scale investors have attempted to corner commodity markets.5 Despite

these ambiguities, UNCTAD [2009] argues that the financialization of commodity futures

trading has attracted traders who may not trade exclusively based on supply and demand

fundamentals, and have increased the likelihood of what they call behavioral overshooting in

commodity markets. Overshooting would presumably cause less, not more, autocorrelation

in commodity prices, which seems to contradict evidence described above. Bobenrieth et al.

[2012] present a model that demonstrates that in the presence of supply and demand shocks

in a rational storage model, cash prices of storable commodities can behave in a bubble-like

fashion, even with fully observable inventories and no uncertainty about future demand.

We use a competitive storage model because it provides a coherent baseline to which

long-run fundamentals should eventually be drawn. We also consider a naive model in which

storage rules are held constant while current markets, conditional on storage, are assumed

to clear. In other words, we consider models in which climate change is both anticipated

and unanticipated by storers. To focus on large-scale fundamentals, we also consider a single

competitive world market for storable food commodities and costless trade.

The market consists of three primary agents: producers, consumers and storers. While

5The Hunt brothers’ infamous foray into the silver market in 1979 and 1980 is perhaps the most well known
attempt to corner a commodity market. We know of no documented cases for consumable food commodities.
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price is endogenous to the model, individual agents are price takers. In any period t, the

amount of food initially available, zt, is comprised of production in period t plus the depreci-

ated carry-over from period t− 1:

zt = ytlt−1 + (1− d)xt−1

= ct + xt (1)

where yt is the realized yield, lt−1 is the planting decision from the previous period, xt−1 is

the amount of inventory left from the previous period, ct is consumption, and d is the decay

rate.

Current market price is a strictly decreasing function of consumption:

pt = F (ct). (2)

And area harvested is a strictly increasing function of expected marginal revenue:

lt−1 = G(E(ptyt)). (3)

Yield is a random process partially determined by weather (wt):

yt = h(wt) + εt, (4)

where εt ∼ N(0, σ2
ε).

With the existence of storers, the discounted expected future price will not exceed the

current price by more than the cost of storage. If the expected future price is too high,

storers will exploit the opportunity to store more, increasing the current price and decreasing

the expected future price. If the expected future price is too low, storers will not carry
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inventory over into the next period because doing so will result in economic loss. The arbitrage

conditions for the competitive storage market are:

pt + k ≥ 1− d
1 + r

Et(pt+1), xt ≥ 0, (5)

where r is interest rate and k is the positive constant per-unit storage cost.6

When there is no storage, all available stock is consumed, so inverse demand will be a

function of the amount on hand:

pt = F (zt). (6)

However, when storage is positive, consumption is less than amount on hand; current price

is therefore greater than F (zt) and is a function of the discounted expected future price. By

combining (5) with equation (6), we can express price as

pt = max {βEt(pt+1)− k, F (zt)} , (7)

where β = 1−d
1+r

.

Given assumptions of costly storage and i.i.d. harvests, others have established the

existence of a stationary rational expectations equilibrium (SREE) for the storage model

(Scheinkman and Schechtman [1983], Deaton and Laroque [1992]). Using this framework, it

is relatively straightforward to analyze the comparative statics of two separate, stationary

yield distributions. Rather than focus on comparing two stationary cases, we examine what

happens to storage behavior and price volatility when the market experiences a gradual shift

in the yield distribution, similar to what we might expect from climate change. Specifically,

we assume that historical weather realizations are i.i.d. and at time t = 0 climate starts to

6In this study we do not consider a convenience yield which, at low inventory levels, might effectively make
storage costs negative.
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shift gradually, moving towards a new equilibrium distribution and that will stabilize at the

new stationary distribution at time T . Consistent with the literature on agricultural impacts

of climate change (e.g. Schlenker and Roberts [2009], Urban et al. [2012]), we assume that

h(ω̃) < h(ω), and σ̃2
w > σ2

w. We also assume that h(·) remains unchanged, and that σ2
ε is

constant. Combined with the other assumptions inherent in the model (e.g. constant de-

mand) this assumption is equivalent to the assumption that all non-climate-related changes

(e.g. technological change, population growth and income growth) balance each other out.

3.1 A Stationary Storage Model

Because no closed-form solution exists, solving the storage model requires the use of stochastic

dynamic programming. We follow the steps used in Deaton and Laroque [1996] and Cafiero

et al. [2011] that utilize a flexible functional form to approximate the control variable, price

(p), as a function of the amount on hand z. We adjust the numerical procedure to allow for

a supply response in the storage model. In the next section we extend the process further to

account for a nonstationary yield distribution.

Assume that inverse consumption demand and land supply response functions have the

following constant elasticity forms:

pt = F (ct) = αdc
γd
t , (8)

lt = G(pt+1yt+1) = αsEt(pt+1yt+1)
γs ; (9)

with γd < 0 and γs > 0 We can rewrite Equation (7) as:

pt(zt) = max {βEt(pt+1(yt+1lt + (1− d)xt)− k, F (zt)} , (10)
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and from Equation (1) we have:

xt = zt − F−1(pt(zt)). (11)

To further simplify the model, the yield distribution is discretized into N points, each with

a corresponding probability Pr(ynt+1) = Pr(yt+1 = ynt+1).
7 Thus, we rewrite (7) and (9) as:

pt(zt) = max

{
β

N∑
n=1

pt+1(y
n
t+1lt + (1− d)xt)× Pr(ynt+1)− k, F (zt)

}
, (12)

and

lt = αs(
N∑
n=1

[
pt+1(y

n
t+1lt + (1− d)xt)y

n
t+1

]
× Pr(ynt+1))

γs , (13)

where
∑N

n=1 Pr(y
n
t+1) = 1. Given parameters of the demand and supply equations, solving

(12) for price as a function of amount on hand, p(z), is an iterative process as follows:

1. Set a range of amount on hand values [z, z].8

2. Guess a set of initial values for (12), using a linear spline to interpolate values between

the N index points of zt ε [z, z].9

3. Given these initial values, calculate storage x using equation (11).

4. Using x from the previous step, solve the system of non-linear equations (13) to find

the corresponding land area.

5. Compute price p using the right hand side of equation (12).

7The discretization process is done using the CompEcon Toolbox for Matlab by Miranda and Fackler [2007]
8The zt are bounded by [zt, z] where zt is the lowest harvest possible in the model. While z can be set

equal to the lowest production with zero storage, z needs to be carefully chosen to be greater than the highest
possible amount on hand.

9While a higher number of points would yield a more accurate approximation of the price function, it is
computationally costly. Cafiero et al. [2011] use 1000 equally spaced points so that they can find a more
precise measurement of the cut-off price. We instead use 150 unequally-spaced points, with the majority of
the points clustered around the no-storage equilibrium of production. We find no significant difference in the
cut-off price using a finer grid of 1000 equally spaced points, and our method of 150 unequally spaced points.
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6. If the price from step 5 is equal to that in step 2, stop the iteration process. Otherwise,

repeat steps 3-5, using the values generated in step 5. Repeat until the vectors of prices

from step 2 and 5 equal each other.

Using this basic structure for solving the stationary case, we proceed to modify it for the

non-stationary case in the next section.

3.2 Adaptive Storage with Climate Change

Storage theory indicates that when a shock is anticipated in the system, price and storage

will move together at the same direction. With an anticipated contraction in supply, storers

– motivated by intertemporal arbitrage – will accumulate inventories in anticipation of higher

future prices. In doing so, they reduce quantity supplied for current consumption and thereby

drive up current price. Normally this increase in the current price would limit storers’ incentive

to accumulate inventories. Yet, because the future price is expected to keep increasing in

response to a continuing contraction in supply, more may be withheld from the market which

lead to increasingly higher prices during the transition period. The accumulation of storage

will only cease in response to unanticipated shocks, or when amount on hand reaches the

stationary level appropriate for the new environment. From that point, price increases along

the adjustment path will gradually become smaller.

We use backward induction, and numerical methods like those described above, to solve

the non-stationary storage model and examine how price and other variables will adjust to

an anticipated, gradual, and long-term shift in the yield distribution. We first solve for a

terminal condition – the storage equilibrium in year T , assuming that the market equilibrium

subsequently remains stationary. We then proceed backwards, first solving the storage model

from period T − 1, proceeding backwards one period at a time, back to period 0, the first

period in which the market reacts to the news of an impending climatic shift. The storage
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amount in period T − 1 is:

xT−1 = zT−1 − cT−1

= zT−1 − F−1(pT−1(zT−1)). (14)

Equation 12 is modified to express the relationship between pT (zT ) and pT−1(zT−1) over the

range of z:

pT−1(zT−1) = max

{
β

N∑
n=1

pT (ynT lT−1 + (1− d)xT−1)× Pr(ynT )− k, F (zT−1)

}
. (15)

It can seen from Equation 14 and Equation 15 that the storage demand function in period

T − 1 can be found once we know pT (zT ) and lT−1. Recall that the land function, accounting

for shifting yield distributions, can be implicitly solved using the following equation:

lT−1 = αs(
N∑
n=1

[pT (ynT lT−1 + (1− d)xT−1)y
n
T ]× Pr(ynT ))βs , (16)

where ynT is the n value of yield in year T . We use the following iterative approach to find

pT−1(zT−1):

1. Pick lT as the starting values for land. (Note: this is found from solving the stationary

case at time T .)

2. Solve for pT−1(zT−1) using equation (15) and lT .

3. Solve for inventory and land using equations (14) and (16).

4. If the land value replicates itself, stop and use it to solve for pT−1(zT−1). Otherwise,

repeat steps 2-4, using this new land value.

Once pT−1(zT−1) is found, we use it to find pT−2(zT−2) and so on until we get to p0(z0). In

the end, we have a system of equations describing how the time paths of storage behavior and
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prices would reflect the market reaction to news of a gradually shifting yield distribution.

3.3 Non-Adaptive Storage with Climate Change

When there is no storage adaptation, the storage rule does not change over time. We begin by

solving the storage model in the baseline year where there is no climate change, and assume

that the resulting relationship between storage and amount on hand remains fixed. We then

apply the same storage rule to find solution of the storage model when supply has shifted

completely to the new environment. Using this newly found storage function in the last period

T , holding storage rule fixed, we then use backward induction to back out storage functions

in year T − 1. We keep solving backward until period 0.

A formal description of the solution is as follows.

We first solve the storage model in the baseline case with no climate change. Denote this

scenario as b, the price and land function can be re-written as:

p(zb) = max

{
β

N∑
n=1

p(lbyb + (1− d)xb)× Pr(yb)− k, F (zb)

}
, and

lb = αs(
N∑
n=1

p(lbyb + (1− d)xb × Pr(ynb ))βs .

Solving these two equations yield storage values, x, over the range of z. We use storage and

amount on hand to build the storage rule for the baseline case without climate change. Using

this storage rule, the storage demand function after supply has completely shifted out can be

found using:

pT (zT ) = max

{
β

N∑
n=1

pT (ynT lT + (1− d)xb)× Pr(ynT )− k, F (zT )

}
,

lT = αs(
N∑
n=1

[pT (ynT lT + (1− d)xb)ynT ]× Pr(ynT ))βs ,
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where yT represent the same yield distribution for all years from T to infinity. Note that

because storage rule is held fixed, there are effectively two state variables in the system,

storage and amount on hand. After finding pT (zT ), we follow the same iterative approach as

described earlier to find pT−1(zT−1) and price functions for the previous years. Specifically,

given pT (zT ), solving the two equations:

pT−1(zT−1) = max

{
β

N∑
n=1

pT (ynT lT + (1− d)xb)× Pr(ynT )− k, F (zT )

}
, and

lT−1 = αs(
N∑
n=1

[pT (ynT lT−1 + (1− d)xb)ynT ]× Pr(ynT ))βs .

yields pT (zT−1).

3.4 Adaptive Storage with Unanticipated Climate Change

One objective is to examine how much storage and commodity prices might be affected today if

the market anticipates gradually more severe production impacts from climate change going

forward into the future. The challenge is to decompose this anticipatory effect of climate

change from current effects of climate change as they happen. To decompose these effects, we

consider a model that accounts for climate change but does not account for the anticipatory

effects of climate change, and can thus infer the anticipatory effect as the difference between

the full forward looking model described above and the model without anticipation. The

model without anticipation still has storage and consumption functions that change each year

with climate change. The difference is that changes in the storage and consumption rules are

not themselves anticipated. This scenario requires solving an infinite-horizon pricing function

in each year, but then applies that infinite-horizon solution for only one year. That is, each

year storage and pricing decisions are made assuming climate will remain fixed going forward,

but each year the climate nevertheless changes slightly.

We evaluate scenario by solving the storage model for each year of the adjustment path
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as if the forecast yield distribution for that year were expected to remain stationary going

forward. Specifically, we solve the two equations:

pt(zt) = max

{
β

N∑
n=1

pt(ltyt+1 + (1− d)xt)× Pr(yt+1)− k, F (zt)

}
, and

lt = αs(
N∑
n=1

pt(ltyt+1 + (1− d)xt × Pr(ynt+1))
βs .

where t is any year in the transition process with its own yield distribution yt.

3.5 Welfare calculation

To estimate the social impact of the price changes, we calculate the resulting producer and

consumer surplus in our model.10 Rather than calculate total consumer surplus which would

be +∞ for a constant elasticity demand curve, we calculate the difference in consumer surplus

using:

CSDIFF =

pt∫
p2000

F−1(pt)dpt,

for t = 2001 − 2080. For producers, we compute the welfare in time t, which equals revenue

in time t minus the production cost in time t:

PS = ptqt − Φ(lt).

This standard welfare measure clearly does not account for persistent effects of price spikes

on human health or indirect effects like civil conflict or political instability.

10The storage arbitrage condition implies a zero surplus for storers.
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4 Supply and Demand

Demand and supply parameters, reported in Table 1, were drawn from existing literature.

Some demand elasticities were estimated while others were assumed. Most studies in the

commodity pricing literature assume perfectly inelastic supply, so in these studies the demand

elasticity implicitly accounts for both demand and supply response.11

Table 1: Storage model parameters

Parameters Values

Demand elasticity -0.04 -0.08
Supply elasticity 0.08 0.04
Decay rate 0.01
Interest rate 0.02 0.05
Storage cost 0.87
Non-stochastic price in year 2000 (dollars) 43.29
Non-stochastic future price in year 2000 (dollars) 49.70
Non-stochastic land in year 2000 (billion hectares) 0.58
Non-stochastic consumption in year 2000 (billion people) 6.21

Estimated values for the combined elasticities (demand minus supply) range from -0.04

to -0.2. Roberts and Schlenker [2013] perform a reduced-form analysis in which they use

contemporaneous and lagged weather shocks to identify the price elasticity of both demand

and supply; they estimate elasticity of demand to be about -0.05, and elasticity of supply to

be about 0.1, which lies in the range of most commodity pricing studies. As a baseline we

use a demand elasticity of -0.04 and a supply elasticity of 0.08 because -0.12 is the middle

of the range of estimates of combined elasticities from the storage literature, and this split

between supply and demand preserves the relative magnitudes of the estimates in Roberts

and Schlenker [2013]. Elasticities on the lower end of this range are needed to rationalize

observed price volatility and autocorrelation [Cafiero et al., 2011, Gouel and Legrand, 2015].

Additional results for the entire range from -0.04 to -0.2 for the combined elasticities are

11For example, using econometric methods developed in various papers by Deaton and Laroque, as well
as a more recent maximum likelihood estimator by Cafiero et al. [2015], which use only price data, it is not
possible to separately identify supply and demand.
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reported as sensitivity checks. We set the parameters of demand and supply functions such

that they are in equilibrium (with zero storage) at the observed price and quantity values in

the year 2000, and the elasticities are equal to the chosen values at that point. We also follow

the previous storage literature in choosing the parameters for depreciation and storage cost:

we set storage cost to be equal to 1% of the price equilibrium in the static setting. Decay

rate and interest rate are assumed to be 0.01 and 0.02 respectively. 12

The constant parameter in the demand equation is set so that, given the observed price

of 43.29 in year 2000 and demand elasticity of -0.04, the quantity consumed equals the con-

sumption level of 6.21 in year 2000.13 The constant parameter for the supply equation is set

so that given a supply elasticity of 0.08 and the producer expected marginal revenue, land

area equals that observed in year 2000.14

5 Model Validation

To obtain a sense of how well this model can rationalize historical prices, we solved for the

dynamic competitive equilibria assuming fixed demand and a stationary yield distribution

with the baseline parameters. We then fed historical global yields through the model to

simulate a stochastic equilibrium time path of prices. Global yield shocks were calculated as

aggregated deviations from crop-specific yield trends, which serve as a proxy random weather

surprises. We compare these simulated prices to the actual historic caloric price index.

To our knowledge such a comparison of simulated and actual prices has never been at-

12Cafiero et al. [2011] find that the estimated food storage decay rate is close to zero once the pricing
function is estimated more precisely with a finer grid.

13Price is the dollar amount in year 2000 to buy 730,000 calories, which equals the sum of 2000 per day
for 365 days. Quantity consumed is expressed as billions of people, assuming each consumes 730,000 calories
annually. These annual consumption quantities are not meant to be realistic; we simply use these units so
that numbers can be easily understood in global perspective.

14The expected future price in year 2000 equals to 49.70, which equal the production weighted price of the
four grain futures contracts that was scheduled to be delivered in December of 2001 and was . The covariance
between yield and price is set to -0.49, which is the covariance between detrended yield and price using FAO
crop data between 1961-2009. Land in year 2000 equals 0.58 billion hectares.
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Table 2: Comparison of Actual and Model-Simulated Prices

Full Sample Restricted Sample
Actual Price Simulated Price Actual Price Simulated Price

Mean 68.18 56.64 62.19 57.03
Std. Dev. 21.53 9.07 12.93 9.54
Correlation -0.01 0.20
Corr ∆ log pt 0.32 0.53

The table compares actual and model-simulated caloric prices. The full sample includes prices
from 1961 through 2009. The restricted sample excludes two periods that experience prominent
demand-oriented shocks, 1972-1975 and 2005-2008, which correspond to the Russian Wheat
Deal and major policy-induced ethanol expansion.

tempted using a competitive storage model. Instead, because identifiable production shocks

are not typically identifiable in commodity markets, and because, in reality, both demand and

supply may experience unexpected variability, estimation and calibration exercises typically

compare moments of the price distribution, not the actual time path of prices. It is therefore

important to keep in mind that this simulation assumes stable, fully anticipated demand,

with price variability following only from random, transitory supply shocks. The simulation

does not account for demand shocks.

Because the data start in 1961, model parameters are set so that the intersection of supply

and demand match observed price, consumption, land and expected revenue of the year 1961.

In order to account for the fact that there is no trend in our baseline storage model, observed

price and yield are also de-trended by removing a quadratic time trend and then centered on

the trend level of 2005. We then set the simulated price in the first year equal to the observed

price in 1961 and then find the associated amount on hand in 1961 using the inverted storage

equilibrium (i.e., amount on hand is expressed a function of price). Given the amount on

hand and price, we subsequently find consumption, production, land, and inventories in the

first year. Then, using inventories from 1961 and observed yield in 1962, we can find all the

other variables for the year 1962. We continue to solve forward for each year until we reach

2009. Simulated and historically observed prices from 1961 to 2009 are plotted figure 1.

Unsurprisingly, model simulated prices do not closely match historical prices. The main
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Figure 1: Actual and model-simulated prices from 1961-2010. The graph shows actual,
de-trended average caloric price and simulated price derived from feeding de-trended historical
production values through our baseline model. Because the model assumes stable demand and
partially-random (weather-driven) supply, we highlight three major demand-related events
that could cause major departures between our model: (1) the Russian Wheat Deal of 1972;
(2) the Asian financial crisis; and (3) the ethanol boom which followed from generous subsidies
and mandates.
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reason for this departure likely stems from demand shocks and perhaps other non-weather

related shocks to food commodity prices, such as changes in governmental policies and trade

restrictions. One notable demand-related shock was the Russian Wheat Deal in the early

1970s, during which the United States sold a large share of its accumulated inventories to

the Soviet Union. Other commodity prices shocks occurred at the time, including a large

oil price spike related to the Iranian embargo, which may have influenced prospective future

supply of staple food grains, since fuel and fertilizer are critical agricultural inputs. These

shocks would not be well captured by crop yield fluctuations. A more recent demand-related

factor followed from the ethanol mandate and ensuing boom in corn-ethanol production in

the United States. Around the same time, China, India and other countries experienced rapid

and sustained growth, which could be a key demand-related source for agricultural and other

commodity prices rises [Trostle, 2008, Kilian and Hicks, 2013].

Although other kinds of demand and anticipated supply shocks likely affected commodity

prices and storage decisions, model-simulated prices show a reasonably strong association with

actual prices when we exclude the early 1970s and the late 2000s (Table 2). It is important to

keep in mind that early real-world departures from the theory, like the 1970s demand-related

shocks, affect the whole future path of prices via storage, so ought not to expect a perfect

fit even if the model were perfect reflection of actual markets outside of these two excluded

time periods. Thus, although the model cannot perfectly account for historical prices, we find

the correlative evidence between the simulation and reality to be encouraging with regard

to its ability to account for transitory yield shocks that are mainly attributable to weather.

After all, our objective is to discern how markets and storage might anticipate and adapt to

changing weather-related factors, holding all else the same.
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6 Projecting Future Prices

We follow the steps outlined above to find storage demand and price functions for every year

from 2000 to 2080. Next, we simulate two hypothetical price time-series. For the stationary

yield distribution with no climate change, we draw 201 random yield observations from the

distribution for the year 2000. We use a starting value of no storage so that in period one,

the amount on hand is equal to the harvest. Given the amount on hand, we can subsequently

solve for price, consumption, production, land, and inventories in the first period using the

storage demand function assuming no yield shift in the model. Then, with inventories from

the first period and yield in the second period, we can find all the other variables in the

second period, and continue sequentially to the final period. In order to avoid bias associated

with selection of the starting value, we discard the first 120 observations. The remaining 81

observations give us the hypothetical price path from year 2000 to year 2080.

The price path and other variables depend on inventories and amount on hand, and these

are influenced by random production shocks. To estimate the whole distribution of potential

outcomes along the path, we simulate this price path 10,000 times to obtain an empirical

distribution of prices for each period of each scenario.

We consider four scenarios. The first is a baseline, which assumes a stationary yield

distributions around year 2000. For each of the three the non-stationary cases, we use the

value of amount on hand in year 2000 from the baseline scenario as our starting value. We

then simulate a price series similarly to the baseline case, but this time using the relevant price

function for each year of the non-stationary case, as described above. We use these solutions

to compare hypothetical price distributions under three different sets of assumptions: 1) no

storage adaptation; 2) storage adaptation without anticipation of future climate change; and

3) storage adaptation with anticipated future climate change.

Because we assume the yield distribution remains constant after 2080, and climate or other

changes may continue beyond that time, the time path of simulated data close to 2080 might
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be dubious. We therefore focus discussion on the time period between 2000 and 2050.

7 Results

Figure 2 shows the effects on average prices, price volatility, and storage under four different

assumptions: 1) The dynamic storage model, with both declining yield and increasing variance

as projected by our yield response functions and climate models; 2) The dynamic storage

model with trending yield, and constant CV; 3) The dynamic storage model with constant

mean yield, and increasing CV; and 4) A baseline case with no climate change, and a stationary

storage model for comparison.

As a result of declining future yield and increasing variance, mean price increases from 47

dollars in 2000 to 87 dollars, while storage increases along the entire transition path.15

Inventory growth substantially ameliorates the influence of greater yield volatility on price

volatility. When both yield level and volatility change, storage increases buffer shocks to such

an extent that the resulting CV of price actually declines relative to the stationary case. This

surprising result follows because inventories are accumulated both from higher yield volatility

and the declining trend in mean yield.

When we consider yield trend and yield CV separately, we find storage increases more

when yield is trends down than when yield CV is increases. Most of the increase in mean

price is also due to the declining yield trend. While the CV of price declines, accumulation

of inventories is not enough to reduce the absolute variance of prices. If there exist critical

thresholds above which price causes greater harm to human health or political stability, then

the risk of such events still increases markedly, especially in later years.

In Figure 3 we present results that how anticipation of changing yield distributions affects

15Note that the model does not replicate the level of observed inventories due to the possibility of a stock-
out, which never happens in reality. Part of this is an aggregation problem combined with transactions costs
of moving commodities from one location to another (Brennan et al. [1997]). There is also the influence of
convenience yields, which we do not consider.
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Figure 2: Mean and variability of yield and price, and mean inventory under various
scenarios The top two panels depict the projected time-series plot of mean yield, and the
standard deviation of yield under four different scenarios. The bottom three panels display
the corresponding level of inventory, and resulting mean and coefficient of variation of price.
While our yield projections and storage model span the years 2000-2100, the focus of our
analysis is on the transition path, so we focus on the years 2000-2050 in the figures.

storage, price level and price volatility. The figure shows the difference between 2000 and 2050

of average price, price volatility, and storage under a scenario where storage is assumed to be

constant as a proportion of amount on hand, and does not respond to expected climate change.

When there is no storage adaptation, mean price increases 112 percent over 50 years while the

CV of price grows 75 percent and inventories decline -71 percent. With storage adaptation but

no anticipation of future climate change, mean price and price CV increase only 87 percent

and 11 percent, respectively. The last scenario where there is storage adaptation with fully

rational anticipation of future climate change observes the smallest increase in mean price
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at 84 percent, a 9 percent decrease of price CV, and the largest change of inventory of 94

percent.

Figure 3: Price, price volatility, and inventory changes under various storage rule
assumptions Each bar represents the percentage change over 2000-2050, and the number
at the top of each bar gives this value. We compare three scenarios: no storage adaptation,
storage adaptation to observed climate change, and storage adaptation to both anticipated
and observed climate change.

Although price volatility is often measured by its CV, as with yield above above, it may

also be meaningful to consider how absolute price volatility changes over time. Figure 4

shows the full distribution of price over 10,000 simulations. As expected, the price distribu-

tion in each year is skewed positively, with occasional high price spikes. Although storage

increases buffer most changes in price variability, the trend in price is positive, and absolute

price volatility increases. Define absolute price volatility as the percentage of price exceeding

$100, approximately double the mean price in the baseline case, we found that absolute price
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volatility increase more than 7 fold by 2050.

Figure 4: Entire distribution of price simulations This plot represents the full distri-
bution of price forecasts. The white line represents the time path of mean price, and the
darkness of the blue shading represents the density of the individual price paths around the
mean. The red line represents the percent of price observations that exceed $100.

A key reason why these projections may overstate the production and price impacts of

climate change is the still-ambiguous role of CO2 on crop yields. While most scientists believe

higher CO2 concentrations will be beneficial for crop yields, the size of the effect remains

controversial. We account for CO2 by using the predicted CO2 level under the A1B scenario

found in the IPCC’s Special Report on Emissions Scenarios (Nakicenovic et al. [2000]) , and

use the DSSAT crop model response to CO2 to estimate the change in crop yield for each

year. We report results in Figures 5 and 6. When we account for CO2, the yield trend slightly

increases over time instead of decreasing, and yield CV increases only 14 percent between

2000 and 2050 instead of increasing 23 percent when there is no CO2 in the model. As a
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Figure 5: Comparison of percentage change in mean yield, inventory, price, and coefficient of
variation of yield and price, with and without CO2 effects

result of higher yield trend, mean price drops by 12 percent in 50 years. Similar to the case

with no CO2 effects, most of the change in mean price is caused by the difference in yield

trend. In addition, because declining mean price reduces storage incentives, the increase of

inventory in Figure 6 is mainly due to higher yield variability.

Table 3 summarizes welfare impacts of anticipated future climate change under various

scenarios of demand and supply elasticities, interest rate, and CO2 effect. In addition to

the three cases of future yield distribution as described earlier, we add two more cases: a

“best” case which uses the 95th percentile yield trend and the 5th percentile yield standard

deviation, calculated over the 1600 yield series we projected; and a “worst” case which uses

the 5th percentile yield trend and the 95th percentile yield standard deviation.

When there is no effect of CO2 on crop yield, the results imply a potential loss in the
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Figure 6: Data simulations under different yield distribution assumptions with CO2 effects

range of $0.2-58 billions by the year 2050 across scenarios. In all cases, producers’ gains are

outweighed by losses to consumers. Most of the changes in welfare are driven by the higher

level of food prices. As noted in the introduction, standard welfare measures do not account

for the more potentially damaging effects of price volatility. When we account for CO2 effects,

the lower mean price causes a rise in consumer surplus increases that exceeds to the loss to

producers in scenarios 1, 2, and 5.16 The absolute change in welfare is much smaller, ranging

from $0.1 to $12 billions.

8 Conclusion

It remains ambiguous how much climate change has and will continue to affect agriculture.

When we extrapolate historical yield-weather relationships onto projections from prominent

climate models, crop yields gradually decline and become more variable. In this paper we

16Scenario 1-3: 1 - both trend and CV change, 2 - changing trend, 3 - changing CV. Scenario 4-5: Worst
and best yield scenarios respectively.
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Table 3: Changes in consumer (CS) and producer surplus (PS) between 2000 and 2050 (billion
dollars) under various scenarios

Storage model parameters
No CO2 effects With CO2 effects

∆CS ∆PS ∆CS ∆PS
Scenario 1
Ed= −.04,Es= .08,r= .02 -247.58 219.40 33.88 -29.95
Ed= −.04,Es= .08,r= .05 -248.91 219.97 35.54 -31.78
Ed= −.08,Es= .04,r= .02 -222.76 196.84 29.36 -25.96
Scenario 2
Ed= −.04,Es= .08,r= .02 -247.21 219.05 34.74 -30.84
Ed= −.04,Es= .08,r= .05 -245.34 217.09 35.82 -31.86
Ed= −.08,Es= .04,r= .02 -220.31 194.76 31.14 -27.54
Scenario 3
Ed= −.04,Es= .08,r= .02 -1.87 1.66 -0.66 0.55
Ed= −.04,Es= .08,r= .05 -1.93 1.43 0.50 -0.72
Ed= −.08,Es= .04,r= .02 -1.91 1.66 -1.84 1.56
Scenario 4
Ed= −.04,Es= .08,r= .02 -496.71 440.18 -83.72 73.92
Ed= −.04,Es= .08,r= .05 -489.10 431.41 -88.34 78.11
Ed= −.08,Es= .04,r= .02 -433.01 381.95 -75.69 66.81
Scenario 5
Ed= −.04,Es= .08,r= .02 -92.19 81.37 106.30 -94.33
Ed= −.04,Es= .08,r= .05 -101.13 89.73 108.67 -96.55
Ed= −.08,Es= .04,r= .02 -89.45 79.15 99.87 -88.25

Note: Scenario 1-3: 1 - both trend and CV change, 2 - changing trend, 3 -
changing CV. Scenario 4-5: Worst and best yield scenarios respectively.

solve a competitive storage model to derive how expectations of such changes would affect food

commodity prices today and going forward into the future, assuming prices would otherwise

remain stationary. These expectations imply an immediate 2% increase in price in 2000, when

future climate change is first anticipated, gradually increasing to 84% by 2050. Thus, it is

plausible that prices today already reflect anticipated changes in future climate.

Though yield volatility is likely to increase, we find that relative price volatility actually

declines. This seemingly counter-intuitive result comes from market-induced storage adjust-

ments in the face of a diminishing yield trend and rising yield variability. Price level and

absolute price volatility still increase, however, with the probability of price exceeding $100
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increasing more than seven fold by 2050. Although storage adjustments can greatly smooth

the transition to a warmer world, they cannot greatly mitigate a secular decline in produc-

tivity. Our welfare analysis suggests a decrease in consumer surplus, and a smaller increase

in producer surplus, indicating an overall welfare decline. This has significant distributional

implications. On a household level, many net food buyers in developing countries are in the

lower end of the income distribution (i.e. the urban poor); in this case, the result would be a

direct transfer from the poor to the rich. On a national level, this looks like a transfer of in-

come, and perhaps wealth, from poor food-importing countries to already rich, food-exporting

countries like the U.S. This is a troubling consideration in the context of international climate

negotiations.

Although we lend little credence to the specific forecasted value of prices in the distant

future, we see such expectations and pricing effects as plausible. Perhaps equally plausible is

the more optimistic projected trend in productivity with CO2-enhanced yields. In both pro-

jections, crop yields become significantly more variable. Our findings suggests that growing

volatility of crop yields from climate change could be of little concern, however. If markets

function well in anticipating climate change then adaptation in storage behavior can accom-

modate more volatile production at a low cost. The minimal influence of yield volatility has

an important caveat: it relies on seamless trade between between regions and countries, and

commodity markets that do not anticipate abrupt changes in trade or policy going forward.

Recent experience with export bans and other kinds of trade restrictions in the face of pro-

duction and price shocks indicates that these policies might obstruct market incentives to

smooth shocks over time and space.
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