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Abstract

We study multiple-unit asymmetric procurement auctions wherein sellers from two classes
draw costs from different distributions. When sellers are asymmetric, a cost-minimizing
buyer discriminates among classes of sellers to enhance competition [1]. Establishing a
quota—a limit on the number of offers that can be accepted from any one class—discriminates
simply and effectively. The quota increases demand scarcity from the perspective of low-
cost sellers, which causes them to lower their offers. To solve for approximate equilibrium
strategies of asymmetric auctions with and without a quota, we develop a new method that
is similar but distinctly different from the constrained strategic equilibrium (CSE) approach
[2]. The new method finds the constrained strategies that minimize the expected gain from
a randomly chosen seller unilaterally deviating from the constrained strategy. We find quota
can enhance competition and lower total procurement cost. We subject the same auctions to
laboratory testing and find savings from quota in excess of that predicted by the approximate
equilibrium strategies. This study is first to combine theory and experimental evidence of
auctions with quotas, though similar mechanisms are widely used in practice. Because the
mechanism is widely used to promote social goals and can also lead to better outcomes
for the buyer, our findings have both positive and normative implications. One potentially
interesting application of quota auctions would be for large-scale procurement of ecosystem
services like carbon sequestration.

Keywords: asymmetric auction, optimal auction, experimental auction, multi-unit auction
JEL: D44, C63, C91

1. Introduction

When sellers are asymmetric, the optimal procurement auction is one that discriminates

between sellers [1, 3]. While the conditions that characterize an optimal auction have been

known for awhile, implementation remains an open issue. How can a buyer, knowing that

sellers are observably different in their ability to produce a good, practically structure an
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auction that exploits this asymmetry to save procurement costs? Direct implementation of

the optimal auction requires knowledge of the distribution of seller costs and the ability to

discriminate perfectly between sellers. Since neither of these two conditions is likely to be

met in practice, we investigate the returns to a simple mechanism that a buyer can easily

implement. The mechanism imposes a quota, a limit on the number of winning offers that

can come from any single class of observably similar sellers, to increase competition within

that class. That is, the auctioneer specifies ex ante that he will accept no more than x offers

from any defined class of sellers.

We find motivation to study simple price discriminating mechanisms in many practi-

cal applications. Private firms engage in contract procurement using auctions. Every level

of government procures goods from suppliers that are observably heterogeneous in some

way. Popular examples include defense-related procurement, procurement of infrastructure

contracts, and procurement of fleet vehicles. The federal government also procures envi-

ronmental services from heterogeneous private landowners using an auction procedure. 1

A similarly intriguing application could be for procurement of carbon offsets from highly

heterogeneous land owners. A mechanism that encourages competition among similar types

could also exist in markets with less structure than a formal auction. Firms, for example,

hire from heterogeneous labor pools and might limit hiring from any particular pool so as

to pay some workers less than their marginal productivity [5].

The quotas we examine are similar to what some in the auction literature call “set asides.”

When multiple units of a good are being auctioned by the government (whether items to be

sold or contracts to be purchased), set-asides reserve some number to be won by qualified

bidders. Qualified bidders are bidders selected based on observable characteristics, often

race or business size, meant in most cases to promote social goals, such as encouraging

participation by a minority class of bidders [6]. Milgrom [7] presents a simple example of

how set-asides can increase competition in an auction and so enhance the auction outcome

from the buyer’s perspective.2 The fact that set-asides are used both in the sale of public

1The largest single example of a land conservation auction is the Conservation Reserve Program, imple-
mented by the U.S. Department of Agriculture. Large-scale conservation auctions like this one would be
especially suitable for the quota mechanism because many offers are selected from a large pool of observably
heterogeneous sellers. Classes of sellers could be defined by location, size, or other characteristics. See Kir-
wan, Lubowski, and Roberts [4] for more detail about the program and estimates of gains to participating
landowners.

2Milgrom’s example is simple in that distributions of bidder reservation values in a purchase auction do
not overlap across classes of buyers. Thus, without set asides or bid preferences, bidders from the high-value
class always win. Our examples are more general, as we allow cost distributions to overlap.
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goods such as spectrum [5], and in government procurement, provides a positive motivation

for our study. That is, in addition to or despite possible distributional goals, governments

or firms may use quotas or set-asides simply to reduce procurement costs.

Quotas reduce procurement costs when sellers of several dissimilar classes compete to sell

multiple goods. Sellers compete against rivals both similar and dissimilar to themselves.3

Sellers from these dissimilar classes, having observable characteristics that distinguish them,

will offer toward a common margin. This margin is set by a mix of within-class and between-

class competition. When one class of sellers has lower opportunity costs than another, a

quota enhances within-class competition. The intuition is straightforward: by limiting the

number of winning offers, demand from that group declines. The artificial scarcity makes

offers more competitive. The tradeoff is that between-class competition is sacrificed: when

a low-cost seller is eliminated, high-cost sellers face less competition.

McAfee and McMillan [8] provide an example in a context of international trade, which we

modify slightly. There are six firms, two foreign and low-cost and four domestic and high-

cost, competing for two government contracts. Unrestricted competition is characterized

by weak competition within the class of low-cost foreign firms. The marginal foreign firm

competes with domestic firms to fulfill the second contract, while the stronger foreign firm

extracts substantial rents. McAfee and McMillan investigate how price preferences influence

the procurement cost of an auction. If a quota were imposed that mandated a maximum of

one foreign and one domestic firm to fulfill the governments need, the low-cost foreign firms

would be forced to compete directly with each other. Rent that would have been extracted

by low-cost foreign firms is reduced while rent accruing to domestic firms increases. The net

effect of a quota depends on the net balance of offsetting influences: low-cost foreign firms

face tougher competition, while high-cost domestic firms inflate their offers in the absence of

direct foreign competition. In this polar example, quota has effectively created two separate

auctions, one in which only foreign firms compete, and one in which only domestic firms

compete.

The total effect of a quota on procurement cost is the sum of enhanced competition

within classes and reduced competition between classes. A quota is thus most beneficial

to the buyer when within-class competition is low among low-cost sellers. This happens if

demand for the marginal unit typically comes from a high-cost class. In single-price auction

without the restriction of a quota, what we refer to as an open auction throughout the paper,

3Similarly, in an auction to sell rather than procure multiple items, a seller would benefit from quota
when buyers of many different classes compete to purchase.
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sellers from the low-cost class will offer toward the same margin as sellers from the high-cost

class and thereby extract substantial rents. Setting a quota effectively reduces the surplus

captured by low-cost sellers.

While the idea of discriminating among sellers was laid out in the seminal paper on

optimal auctions [1], the method of discrimination considered here is new in a key way.

Earlier papers have examined what have been called ”bid preferences,” which amount to a

discounting of some offers relative to others for the purpose of determining winners. For

example, auctions for the procurement of transportation contracts in California select a

qualified small” contractor if its offer is within 5% of the lowest offer by an unqualified

seller. [9, 10]. Such a preference could be formulated as a discount to the qualified offer

for only the purpose of ranking [11]. That is, the buyer ranks discounted offers, equal to

(1 − preference) × offer, from lowest-to-highest, with a larger preference for small bidders

and then selects the lowest discounted offer but pays the winner their full undiscounted

offer. Such offer preference programs are common in government procurement and have

been applied in high stakes auctions such as the first auctions for spectrum in the United

States [5]. Offer preferences are also used in procurement of snow removal contracts [12] and

have been studied in experimental settings[13]. A persistent finding is that procurement cost

can be reduced by some positive preference, so long as the preference is not so strong as to

inhibit participation by strong sellers.

Perhaps because most auction research in the area of offer discrimination considers single-

unit auctions, set-asides and quotas, which apply only to multi-unit auctions, have received

less study. In a multi-unit context quota neatly handles a problem inherent to the preference

approach. To implement a price-preference mechanism, the auctioneer must have a good un-

derstanding of cost differences between classes. Such information is not necessary with quota.

There are many applications, such as auctions for conservation land, when the auctioneer

is less likely to know which classes are low-cost and which are high-cost, but nevertheless

expects costs to differ widely across classes. In this case, providing a preference to the wrong

party could increase procurement cost. Alternatively, the buyer can use a quota–a binding

limit on the number of offers accepted from any one group–to encourage greater within-class

competition, even if the buyer is unable to quantify cost differences across groups of sellers.

Note that to enforce this rule, the buyer need not be able to identify which group of sellers

is relatively low-cost. The only requirement is that the sellers themselves be aware of where

costs in its own class lie relative to the broader population of classes.

Our research applies quota in an independent private values model of a one-shot, sealed-
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bid auction. Because our focus is on procurement, we model a pay-as-offered auction as

opposed to a uniform price auction. Almost all government procurement auctions use the

pay-as-offered format. Thus our analysis differs from that of Ayres and Cramton [5] who

investigate preferences and set-asides in multiple-round, open-bid auctions, and from Denes

[6], who studies multiple auctions over time.

2. The Environment and Symmetric Auctions

In this section we describe the environment of a generic procurement auction for multiple

goods with two types of sellers. We then describe the methods we use to approximate

equilibrium offer functions using strategies constrained to be flexible parametric functions of

each type’s cost.

Suppose two types of sellers, Type A and Type B, draw their costs randomly and inde-

pendently from distributions FA and FB suppored by the intervals [cA, cA] and [cB, cB]. The

distributions FA and FB differ by an additive paramater δ such that FA(c) = FB(c+δ). This

environment embodies a simple form of class asymmetry: sellers perceive Type A bidders as

typically lower cost than Type B sellers but with identical within-group cost heterogeneity.

There are N = nA +nB sellers, where nA and nB are drawn independently from FA and FB.

The number of sellers of each type is common knowledge to the buyer and all sellers. The

distributions are common knowledge to all sellers but not necessarily to the buyer. Each

seller observes his or her own cost draw before submitting an offer but does not observe the

cost draws of other sellers. Each seller submits a single offer and the buyer accepts m < N

of those offers.

We use this environment to investigate how offers, procurement costs and rents accruing

to sellers change across different auction formats, both in theory and in the laboratory. First

we consider theoretical predictions.

Because closed-form solutions to asymmetric auction problems typically do not exist, we

solve for an approximate solution using numerical methods. To describe how these methods

work, and verify that their accuracy, we begin with a symmetric auction (δ = 0) wherein the

buyer accepts the lowest m offers, which has a well-known unique Bayesian Nash equilibrium:

Theorem. Let Y1, Y2, ..., YN−1, represent the random cost draws of each of the N − 1 sellers

that are not seller i, ordered from lowest-to-highest. Let c be seller i’s cost draw. The unique

symmetric equilibrium strategy for all sellers when δ = 0 is b(c) = E[Ym|Ym > c].

Proof. See Weber [14] or Ortega-Reichert [15].
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In words, each seller offers his or her expectation of the mth ordered cost draw conditional

on that order statistic being greater than the seller’s own cost draw (ie., conditional on

winning). The intuition is as follows. A seller facing N − 1 ex ante identical competitors

will submit an offer just low enough to be among the m lowest. Because the equilibrium

is symmetric (every seller has identical beliefs about other sellers’ costs), all players follow

the same strategy and the offer function is monotonically increasing in c, so sellers with the

lowest m cost draws will be accepted. Each seller thus forms expectations of what the mth

lowest cost draw will be, conditional on it being greater than the sellers own draw. Offers

differ only by the extent to which sellers cost draws influence the conditional expectation.

Expected procurement cost are thus mE[Cm] where Cm is the mth lowest of N cost draws.4

This result, though based on some technical and behavioral assumptions, gives predictions

that turn out remarkably similar to experimental outcomes, as we show below.

The symmetric case gives the unique analytical solution described above. This solution

does not hold for the asymmetric case where δ > 0. Instead we develop numerical approx-

imations for equilibrium bid functions. We use the symmetric case to verify the accuracy

of the numerical approximation because it, unlike the asymmetric case, can be compared to

the known equilibrium.

3. Constrained Equilibria

Solving for equilibrium bid or offer functions when buyers or sellers are asymmetric is

notoriously difficult [16]. We gain traction with this problem by using constrained strategies,

a common approach that follows from Rothkopf’s markup model [17]. Rothkopf considered

strategies that were constrained to be a linear function of cost. Thus, each seller with a

random opportunity cost c submits an offer θc that is some constant markup of cost, the

parameter θ having been chosen strategically prior to observing c to maximize expected

gains. Linear strategies have two advantages. First, by constraining the strategy space one

can solve for equilibria that would otherwise prove difficult or intractable. Second, strategies

that are simple functions of a sellers private information can be more useful predictors of

actual behavior than unconstrained Bayesian Nash strategies [18].

It is probably desirable, however, to consider constrained strategies that are more flex-

ible than a linear markup. We therefore consider a family of strategies that can be made

4Note that Cm is the mth order statistic of N draws and thus differs from Ym which is the mth order
statistic of N − 1 draws.
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arbitrarily flexible. Armantier and Richard [19] and Armantier, Florens, and Richard [2]

show that strategies constrained to a sequence of progressively higher-order polynomials will

converge to an unconstrained Bayesian Nash Equilibrium (BNE) should one exist. We can

thus consider offer functions that are Kth-order polynomial functions of cost. Since offer

functions differ across types, we denote the polynomial offer function for type T and order

K by:

bTK =
K∑
k=0

θTk c
k. (1)

We use a polynomial strategy function for simplicity, and because it is adequate in many

cases. In general one can use any functional form. For consideration of asymmetric auctions

in section 4 we use restricted cubic splines rather than polynomial. A constrained offer

function leads to an associated equilibrium:

Definition. A constrained strategic equilibrium (CSE) is given by a pair of vectors θ∗ ≡
{θA∗, θB∗} and corresponding offer functions bT∗K such that all sellers of type T ∈ {A,B}
choose θT∗ = {θT∗1 , θT∗2 , ...θT∗K } ∈ Θ ⊂ RK to maximize his or her expected gain prior to

observing cost and given all other sellers choose according to their constrained strategies

defined by θT∗.

Unfortunately, it is not in general clear whether either a CSE or even an unconstrained

equilibrium exists in an asymmetric auction. Moreover, existing convergence theorems say

little about how far any finite order CSE may be from a true equilibrium.

One way to measure how well a CSE approximates a true equilibrium is to estimate

the expected gains to a randomly chosen seller can earn by unilaterally deviating from the

constrained strategy. That is, consider the expected gain to a randomly chosen seller i from

choosing an offer unconstrained by the polynomial (or other finite order) offer function bTK ,

but assuming all sellers j 6= i choose according to the constrained strategy. If the CSE is

close to a true equilibrium, the potential gains from unilateral deviation will be small.5 This

measure has strong intuitive appeal and earlier work on single-unit asymmetric auctions has

shown high-ordered CSE have a low expected gain from optimal deviation [2]. This work

also shows that for instances where there is a known equilibrium, high-order CSE equilibria

5But there is no existing theory that implies that this necessarily goes the other way, that if the expected
gains from optimal deviation are small then the constrained strategy is necessarily close to a true equilibrium.
Thus, a mild incentive to deviate might only suggests a fairly plausible outcome.
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well approximate that equilibrium.

Definition. The expected gain from unilateral deviation (EGD) from a constrained strategy

defined by the finite parameter vector θ is given by

EGD(θ) = E
[
(b∗i − ci) (1− Fj 6=i(b∗i |θ))−

(
bTK − ci

) (
1− Fj 6=i(bTK |θ)

)]
where:

• E is the expectation taken over a randomly selected seller i ∈ {1, ..., N} with random

and privately observed cost ci;

• Fj 6=i(b|θ) is the distribution function of the mth ordered offer from sellers i 6= j all using

constrained strategies defined by θ, so that 1− Fj 6=i(b|θ) is the probability an offer of b

is accepted;

• b∗i is the optimal unconstrained offer by individual i that maximizes (bi − ci)(1 −
Fj 6=i(bi|θ)); and

• bTK is the Kth-order constrained strategy for individual i of type T .

Starting from this definition, we take an approach that is similar but distinctly different

from CSE. The idea is simply that, if the size of the expected gain from unilateral deviation

is a measure of closeness to true equilibrium, then a good choice for a constrained strategy

that approximates the true equilibrium is one that minimizes the size of this expected gain.

Definition. The minimum expected gain from unilateral deviation (MEGD) is given by

MEGD(K) = min
θ

EGD(θ)

and the set of strategies selected to minimize this objective are defined as MEGD constrained

strategies denoted θ∗MEGD ≡ {θA∗MEGD, θ
B∗
MEGD} such that

θ∗MEGD ≡ arg min
θ

EGD(θ) (2)

In principal we can find θ∗MEGD for any constrained strategy of order K.

There are several advantages of this new approach. First, it directly optimizes the criteria

by which closeness to true equilibrium has heretofore been judged. Second, the approach is
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much easier to program than CSE and uses simple computational methods, mainly because

it transforms an equilibrium problem into a somewhat simpler optimization problem. Third,

we found it much more stable than CSE and less sensitive to starting values. Fourth, for the

symmetric auction in our environment (where δ = 0 or there is a single type) where there is

a known and unique true equilibrium, we find this approach converges monotonically toward

the true equilibrium as the order of polynomial increases. In contrast, CSE convergence is

not always monotonic in practice.6

We illustrate MEGD strategies for a symmetric auction with 10 sellers, each with a

privately observed cost drawn randomly from a uniform distribution over the range [0, 100].

The buyer accepts and pays as bid for the lowest six offers. This auction has a well-known

solution given by the theorem above and is plotted by the solid black line shown the Figure 1.

This true equilibrium offer function is derived from a series of conditional order statistics

of cost draws. We found the function numerically by sampling nine random cost draws

one million times, and finding average 6th-order statistic for the subset of cases where the

order statistic was greater than each cost value along an index between zero and 100. This

equilibrium offer function has an intuitive shape: At the low end the offer function begins at

60 and is flat, since low cost draws will almost surely will be among the lowest cost draws.

As cost rises significantly, the offer function rises, gently at first, and then asymptotically

approaching cost at the highest possible levels. This true equilibrium offer function serves

as a benchmark for the constrained strategies we consider next.

The colored lines in Figure 1 show polynomial constrained strategies of order K =

{2, 3, 4, 5, 6, 7}, each selected using MEGD. The coefficients for these functions are reported

in table 1. These functions were found by numerically optimizing equation 2 using the algo-

rithm outlined in the appendix.7. The table also reports a series of summary statistics for

each MEGD constrained strategy: (1) EG, the expected gain to the seller (before observing

cost); (2) EGD, the expected gain from optimally deviating from the constrained strategy

after observing cost (the objective minimized); (3) EGD (%), which is EGD as a percent of

EG; and (4) AD, the expected absolute deviation from the true equilibrium strategy.

6This is true in our experience. Indeed, finding true CSE was difficult. Instead we found constrained
strategies wherein the differential equations following from the first-order conditions were satisfied as closely
as possible, but were not exactly zero. The CSE approach appears to be unstable because first-order
conditions need only be satisfied in expectation, but may differ from zero by large amounts both positively and
negatively for specific cost realizations, so long as positive deviations balance out with negative deviations.
Put another way, it is theoretically possible to have a CSE with large EGD. In contrast, the MEGD approach
penalizes both positive and negative deviations from zero across the whole range of possible costs.

7The R computer code we used is also available upon request.

9



Figure 1: Polynomial constrained strategies that approximate true equilibrium strategies for a symmetric
procurement auction
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Notes: The graphs show polynomial constrained strategies for order two through seven for a symmetric

auction in which privately observed costs are drawn randomly from a uniform distribution on [0, 100] and

the buyer accepts the six lowest offers. The top graph shows the whole range of costs and offers and the

bottom graph magnifies the lower, more critical range, where expected gains are largest due to high odds

of offer acceptance and the large difference between the offer and cost. The true unconstrained theoretical

equilibrium is given by the black line and the polynomial strategies are selected by minimizing the expected

gains from unilateral deviation from the constrained strategies (hence MEGD). At least in this case, as the

order of polynomial increases, the MEGD constrained strategy converges monotonically toward the true

equilibrium.
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Both the graphs and the statistics show the MEGD polynomials approximate the true

equilibrium very well. They also show strong convergence toward the true equilibrium strat-

egy as the order of polynomial increases. The expected gain from optimally deviating from

the quadratic strategy is just 0.0675 in comparison to an overall expected gain of 19.0, about

one-third of one percent. Furthermore, in most cases, EGD declines by half or more with

each successively higher polynomial. The expected gain from deviating from the seventh-

order polynomial is less than 0.003, or 1.4 hundredths of a percent of the overall expected

gain.

One notable feature of MEGD strategies is that they place more weight on fitting the lower

portion of the offer curve than the higher portion. That is, the absolute difference between

the polynomial strategy and the true equilibrium strategy tends to be smaller for lower-cost

outcomes. This makes sense given expected gains are much greater for low-cost sellers as

compared to high-cost sellers, which means the marginal gains from unilateral deviation are

likely to be greater. High-cost sellers are unlikely to have their offers accepted anyway, and

optimal offers tend to be much closer to cost, so marginal gains from deviation from the

constrained strategy tend to be small. Thus, the MEGD approach chooses polynomials that

work harder to fit the offer function on the lower end of the cost schedule. This is also

why the absolute deviation (AD), while generally declining with higher-degree polynomials,

does not decline monotonically. However, closer inspection of the lower portion of the offer

function (the bottom panel of figure 1) shows strong convergence in the absolute sense for

the lower part of the cost schedule. Even with magnification, for this portion of the curve

the 7th-order polynomial is visibly indistinguishable from the true equilibrium.

4. Approximate Equilibria for Asymmetric Auctions

Having shown that MEGD constrained strategies can well approximate true equilibria

in a symmetric auction, we use the technique to find approximate equilibrium strategies

for the asymmetric auctions that are the focus of our research. These auctions consider

the environment described above with five Type A sellers and five Type B sellers and three

cases of asymmetry, δ = 25, δ = 50 and δ = 75. Thus, Type A sellers have costs drawn

from a uniform distribution on [0, 100] and Type B sellers have costs drawn from a uniform

distributions on [25, 125], [50, 150] or [75, 175], depending on the degree of asymmetry. There

is common knowledge about the number of each type and the underlying distributions from

which each type’s costs are drawn, but information about the outcomes of the cost draws

are the private information of each seller.
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Table 1: Summary of MEGD strategies for a symmetric auction

Order of MEGD Polynomial
(2) (3) (4) (5) (6) (7)

Coefficients
Intercept 60.8 61 60.1 59.9 59.9 60
Cost -0.159 -0.061 -0.00115 0.0736 0.0462 -0.00593
Cost2 0.00545 0.00192 -0.00238 -0.00813 -0.00521 0.00195
Cost3 3.09e-05 0.000132 0.0003 0.000182 -0.000223
Cost4 -6.54e-07 -2.65e-06 -4.19e-07 1.08e-05
Cost5 7.85e-09 -1.18e-08 -1.75e-07
Cost6 6.53e-11 1.26e-09
Cost7 -3.51e-12

Approximation Statistics (see Notes)
EG 19 19.4 19.2 19.2 19.2 19.2
EGD 0.0675 0.042 0.00776 0.00849 0.00543 0.00271
EGD (%) 0.355 0.216 0.0404 0.0442 0.0282 0.0141
AD 0.734 0.919 0.437 0.0408 0.059 0.128

Notes: The table reports polynomial offer functions selected by minimizing the ex-
pected gains from optimally deviating from the constrained strategies (MEGD). The
auction considered is a symmetric auction in which all sellers’ costs are drawn from a
uniform distribution on [0, 100] and the buyer accepts the six lowest offers. The offer
functions are plotted in Figure 1 together with the true Bayesian Nash Equilibrium.
The bottom four rows report other statistics of interest: EG is the expected gain to
the seller before their random cost is observed; EGD is the expected gain from op-
timally deviating from the constrained strategy (the objective minimized); EGD(%)
is 100% ×EGD

EG ; and AD is the expected absolute difference between the constrained
strategy and the true equilibrium strategy.
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A key difference between the asymmetric auctions and the symmetric auction above is

that there are separate offer functions for each type. Thus, for a given order of approximation,

there are twice as many parameters over which to minimize EGD. A second challenge with

asymmetric auctions is that the odds that an offer from higher cost draws from the weak

(higher cost) Type B sellers are extremely low, which makes these probabilities difficult

to approximate from Monte Carlo simulation. The problem is accentuated with polynomial

offer functions because offers near the boundary of the cost distribution can be very sensitive

to coefficients on the higher-ordered terms. We therefore use restricted cubic splines instead

of a simple polynomial. Restricted cubic splines, often used to fit non-linear statistical

relationships, connect piecewise cubic polynomials across a series of knots, while constraining

the function to be both continuously differentiable and linear outside the first and last knot.

The linearity constraint near the boundary is well suited to asymmetric auctions because the

equilibrium offer function is likely to be nearly linear at near the boundary anyway (since

odds of acceptance are very nearly zero or very nearly one) and the linearity combined with

second-order continuity at the knots makes the function robust to small simulation errors.

We also found restricted cubic splines converged more quickly and had smaller MEGD than

simple polynomials with the same degrees of freedom. Note that a restricted cubic spline

requires two fewer degrees of freedom than the number of knots.8

For each degree of asymmetry, we compare three different auctions: (1) a uniform price

auction that pays the lowest offer rejected (the seventh lowest of the ten) to those making

the lowest six offers; (2) a pay-as-offered open auction in which the lowest six offers are

accepted regardless of type; and (3) a pay-as-offered auction with quota in which the lowest

six offers are accepted subject to the constraint that no more than four of five offers are

accepted from any one type. In first auction all sellers offer their cost in equilibrium. In the

second auction, sellers shade their bids to balance the odds of acceptance with the surplus

received if accepted, but equivalence of the buyer’s payment between (1) and (2) does not

hold due to asymmetry. In the third auction imposes discrimination by instilling greater

competition, particularly among lower-cost Type A sellers, because the type-specific limit is

far more likely to bind for these sellers as opposed Type B sellers. We also consider a case

wherein there is no true asymmetry but individual sellers are still assigned types. The idea

here is to explore what happens if quota is imposed even when there is no true asymmetry.

The MEGD approximate equilibrium offer functions for both auctions are plotted in

8As with the symmetric auction described above, details of the numerical implementation are given in
the appendix and the computer code is available from the authors.
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figure 2. The figure has four panels, one for each case of asymmetry, plus a “symmetric

case” for which types are in fact identical are but are still potentially subject to type-

specific quotas. Each panel plots the MEGD constrained strategies for the auction with

quota and without quota, with each strategy constrained as a restricted cubic spline with

six knots. A restricted cubic spline with six knots uses four degrees of freedom, plus one

for the intercept, and thus uses the same number of parameters as a 4th-order polynomial.

For all the constrained strategies plotted, the EG and EGD statistics (see table 2) are both

absolutely and relatively less than that of the 4th-order polynomial constrained strategies

for the symmetric auction plotted in figure 1, which were visibly indistinguishable from

the known true equilibrium. The summary statistics were derived from simulating 10,000

auctions assuming sellers use the near-equilibrium MEGD strategies. The EGD statistics

suggest the MEGD approximations are close to a true equilibrium, with an expected gain

from unilateral deviation on the order of one-hundredth of one percent of the expected gain.

In addition to the EG and EGD statistics for each type of seller, table 2 reports the

expected cost to the buyer for the six units purchased and the expected total cost to sellers

of producing the six units purchased. Because the number of units purchased is fixed (and

thus the benefit to the buyer), the lower the expected production cost of units purchased,

the greater the total economic surplus.

Several interesting patterns emerge from the solutions to the asymmetric auctions. First,

while auctions without quota are nearly as efficient as the uniform-price auction, the buyer’s

payment is less in the other two auctions. The non-equivalence of the buyer’s payment

between the pay-as-offered auction without quota and the uniform-price auction follows

from asymmetry.

Second, in asymmetric auctions without quota, offers from the higher-cost Type B sellers

are less than offers from the lower-cost Type A sellers when holding the specific cost draw

fixed. (Focus on where the blue lines overlap.) This pattern is difficult to discern on the

low-asymmetry case because the offer curves or so close, but very clear on the medium- and

high-asymmetry cases. This result follows from the slightly different information sets that

the two types possess: Type A sellers know they are competing against four Type A sellers

and five Type B sellers, while Type B sellers know they are competing against five Type

A sellers and four Type B sellers. Thus, holding the seller’s cost draw fixed, B types face

greater competition than a A types, since B types face relatively more of the lower-cost A

types. As Krishna [20] describes it, “weakness leads to aggression.” This phenomenon leads
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Figure 2: MEGD strategies for asymmetric auctions with and without quota
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to a very small amount of inefficiency.9

Third, in comparison to the non-discriminatory open auction, quota leads to lower offers

from Type A sellers and higher offers from Type B sellers. Type A sellers make lower offers

because while their offers could be among the six lowest, their offer may nevertheless rejected

due to the quota. Conversely, Type B sellers face less competition from lower-cost A types,

which implicitly increases demand for units from B types, who are much less likely to be

rejected due to the quota. This effect is offset somewhat by the fact that Type A sellers

are themselves bidding more aggressively, which feeds back and causes B types to bid more

aggressively.

Fourth, if asymmetry is large enough, the quota mechanism saves procurement costs for

the buyer in comparison to auctions without quota. In the medium-asymmetry case the

buyer’s expected payment is 528.7 with quota and 533.4 without; in the high-asymmetry

case the buyer’s expected payment is 581.5 with quota and 631.3 without. This result is

not entirely obvious because the buyer will sometimes reject a lower-cost unit in favor of a

higher-cost unit, but saves expenditures since low-cost sellers make more competitive offers.

Except for the case with a small amount of asymmetry (δ = 25), savings from increased

competitiveness outweighs losses from increased costs. Gains to the buyer from quota come

at a cost to expected gains from Type A sellers and loss in total economic surplus, which

is the standard result with imperfect price discrimination. Not surprisingly, cost savings to

the buyer from using quota are larger the greater the amount of asymmetry.

Fifth, in the low asymmetry case quota barely reduces the buyer’s expected payment,

the increase is tiny (457.01 with quota and 457.06 without quota). Even in the case of no

asymmetry, expected buyer costs are are just 0.76, or less than 2 tenths of one percent,

greater than an auction without quota. This is interesting and practically useful because

in real-world applications buyers may have less information about the degree of asymmetry

across types than sellers do. If such a seller were to use the quota mechanism, there is little

additional payment in the event asymmetry is actually too low for profitable use of quota,

but large savings in the event asymmetry is high. Intuitively, the lower the asymmetry, the

less likely the quota will bind in the first place. Consider, for example, the case both types

were to have their costs drawn from the same distribution (δ = 0) and thus have identical

offer functions. The probability that the quota binds for any one type would therefore equal

the odds that the largest of five uniform cost draws is smaller than the second smallest

9In the simulations, efficiency, indicated by the sellers’ total cost, is sometimes slightly higher in the
pay-as-offered auctions without quota, but this only happens due to chance error in the simulation.
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Table 2: Summary of MEGD outcomes for asymmetric auctions

Buyer’s Type A Type B Type A Type B Sellers’
Payment EG EG EGD EGD Total Cost

No Asymmetry, δ = 0
Uniform Price 380.76 18.99 19.09 0 0 190.35
No Quota 381.53 19.15 19.17 0.01 0.01 189.96
Quota 382.29 19.18 19.19 0.00 0.01 190.46

Low Asymmetry, δ = 25
Uniform Price 457.72 28.48 11.64 0 0 257.12
No Quota 457.06 27.70 12.40 0.01 0.02 256.55
Quota 457.01 26.93 12.80 0.02 0.02 258.37

Medium Asymmetry, δ = 50
Uniform Price 540.89 40.62 6.30 0 0 306.33
No Quota 533.13 38.14 7.25 0.03 0.04 306.17
Quota 528.15 32.70 10.21 0.02 0.04 313.61

High Asymmetry, δ = 75
Uniform Price 655.31 59.21 3.66 0 0 340.96
No Quota 631.17 53.38 4.59 0.04 0.05 341.29
Quota 581.34 33.66 9.75 0.01 0.04 364.27

Notes: The table reports average outcomes from simulating 10,000 auctions using
MEGD constrained strategies plotted in figure 2. Type A sellers’ costs are drawn
randomly and independently from a uniform distribution on [0, 100]; Type B sellers’
costs are drawn from a uniform distribution on [0+δ, 100+δ]. There are five sellers
of each type and the buyer (auctioneer) purchases six units in each auction. In
Uniform Price auctions, the lowest six offers are accepted, each is paid the lowest
rejected offer (the seventh ordered offer), and all offers equal cost and the auction is
efficient. In No Quota auctions the lowest six offers are accepted regardless of type.
In Quota auctions the lowest six offers are accepted subject to the constraint that
no more than four of five offers from any one type are accepted. Buyer’s Payment is
the average sum of payments by the buyer to the sellers for the six units purchased.
EGA and EGB are the expected gains to each type of seller. EGDA and EGDB are
the expected gains from unilateral deviation, a measure for how close the MEGD
strategies are from true equilibrium (zero would be a true equilibrium). Sellers’
Total Cost is the expected cost to sellers of the six units purchased by the buyer.
Holding the buyer’s value of the six units purchased fixed, a lower cost implies
greater total economic surplus.
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of two uniform draws, which equals 0.024. The slightly lower odds of selection causes the

equilibrium offer functions to be only slightly higher than they would be in an open auction

without quota. An inefficient selection of offers occurring with a probability of slightly less

than five percent, would create a second small inefficiency and cost to the buyer. But this

is the worst possible scenario from a naive application of a quota.

5. Experiments

There are several reasons for experimentally testing the quota mechanism in the labora-

tory. First, because closed-form theoretical predictions are difficult or impossible to derive,

empirical validation of the predicted influence of quota complements the approximate theo-

retical solutions already described. Second, behavior may systematically differ from theory.

Human sellers do not always use strategies consistent with standard game theoretic concepts,

even in environments where the mathematical theory suggests such optimal strategies are

simple, and in this case the strategies are not particularly simple.10 Third, we wish to test

whether the price discriminating mechanism is implementable in the sense that the rules

can be easily explained to sellers and outcomes are reasonably robust to tacit collusion or to

poor, non-strategic offer making by some sellers.

5.1. Experimental Procedure

We report results from 17 experimental sessions that included 269 individual real-money

auctions, plus demonstration auctions. Each session included ten undergraduate students

from the University of Maryland. All experiments were computerized, using custom-made

software. In each session, five participants were randomly classified as Type A sellers and

five were classified as Type B sellers. Subjects did not know the Type-identities of their

competitors, but did know that there were five sellers of each type. Subjects were also told

how their costs were drawn randomly, with Type A costs on the interval from $0.00 to $100.00

(rounded to the penny) with all values equally likely to occur, while Type B sellers costs

were drawn uniformly from the interval $50.00 to $150.00. This environment is equivalent

to the medium asymmetry case examined numerically above.

Subjects were randomly assigned to a computer terminal that displayed information for

them when they sat down. They were shown written instructions that were simultaneously

read aloud by the proctor, and were then given time to re-read the instructions on their own

10It is well known, for example, that bidders in second-price sealed-bid auctions typically do not submit
bids equal to their costs, even though doing so is unambiguously optimal [21]
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before the first auction began.11 Each subject had an opportunity to practice each auction

hypothetically before participating for real money. Payments and costs were delineated in

“dollars” for simplicity, but an exchange rate between experimental dollars and U.S. dollars

made experimental dollars was worth much less than U.S. dollars.12 Students earned an

average of about $30 in an hour long session.

Each subject participated in both open auctions and auctions with type-specific quotas.

Because every subject participated in both treatments, we can make both within-subject

and between-subject comparisons. We varied the order of treatments to control for learn-

ing effects and, in some sessions, reverted to the first auction after several rounds of each

treatment (with or without quota). Subjects did not change between Type A and Type

B in sequential auctions, mainly to facilitate learning of optimal type-specific strategies.13

Subjects would, however, receive new random cost draws in each auction. These variations

allowed us to examine whether individual offer behavior varied with experience and to control

for these effects if necessary. In the regression analysis, we explicitly model order and session

effects using random and fixed effects. These have little influence on estimated treatment

effects but do influence standard errors. Perhaps most importantly, we find no evidence of

last-round effects.14

We focus on the medium-asymmetry case in our experimental analysis. While it may be

worthwhile to confirm that procurement cost is further reduced by a quota as asymmetry

increases, we were concerned about perceived fairness in the experimental auctions. With

large asymmetry, high-cost Type B sellers rarely have their offers accepted; and when they

are accepted, they tend receive very small surplus. The small rewards for participation can

11Instructions and pictures of the computer screen are provided in an appendix.
12One experimental dollar was worth $0.05. We also gave a fixed dollar amount for participating, typi-

cally $5. Average earnings by subjects during the auction session were about $30, but varied substantially
depending on whether the subject was a Type A or a Type B bidder (standard deviation of earnings was
approximately $19). To even-out earnings we allowed subjects to play a very short game at the conclusion
of the session in which the subjects that had been disadvantaged during the auction enjoyed more favorable
terms.

13We did, however, experiment with switching types across treatments.
14Because each group of students played multiple rounds of each auction, some may argue that our experi-

ment is truly a dynamic game, not the static one about which we have theorized. By this reasoning, the final
rounds may be the only true experimental trials of our theoretical environment. We recognized this point
but generally believe dynamic strategic considerations to be of relatively small importance, particularly in
an environment with a relatively large number of players making anonymous offers. Such an environment
makes it particularly difficult to instill rewards or punishments that can sometimes make repeated play differ
from single-shot games. In any case, a Nash equilibrium in each stage-game of repeated play is itself a Nash
equilibrium, as well as a subgame-perfect Nash equilibrium, so our static predictions nevertheless give one
plausible solution to the dynamic game.
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lead to frustration, loss of interest and unrealistic behavior. It seems intuitively clear that the

benefit of using a discriminating mechanism should increase as seller heterogeneity increases.

Consequently we didnt believe that it was necessary to test the quota auctions under the

high asymmetry condition. We did not test the quota mechanism with low between-group

heterogeneity, mainly because with low asymmetry, theory suggests quotas will have little

influence on offer strategies or outcomes. However, given that we observe more aggressive

bidding in our experimental sessions than we expected, in retrospect this may have been

desirable. We leave experimental evaluation of quota in low asymmetry cases for future

research.

5.2. Experimental Data

In figure 3 we present experimental offers plotted against cost draws. The top two panel

of the figure show offers from auctions without quotas and the bottom two panels show

offers from auctions with type-specific quotas. Raw individual offers are presented in scatter

plots on the left and smooth cubic polynomials summarizing the offer trends are shown on

the right. The different colors, point types and line types indicate different experimental

sessions, each of which included ten or more individual auctions. Statistics summarizing

offers broken out by seller type (A or B) and cost quartile are reported in table 3. While

individual offers vary considerably conditional on cost (a phenomenon contrary to theory

but not altogether surprising) offers do cluster around the same regression line conditional

on cost.15

In auctions without quota, offers increase slightly with cost on the lower half of the cost

schedule and are centered around the average highest offer accepted, about $85. When cost

draws are above the average marginal offer, offers tend to increase more sharply with cost,

with a slope equal to about 0.8. Interestingly, offers in the first and second quartiles of Type

B sellers are somewhat less that those in the third and fourth quartiles of Type A sellers,

which have similar cost draws. This result is consistent with the theoretical prediction that

“weakness leads to aggression.” These differences are statistically significant and similar in

magnitude to those predicted by the approximate theoretical equilibria reported above.

In auctions with quota as compared to auctions without quota, we see significantly lower

offers from Type A sellers that tend to increase somewhat more sharply with cost. Offers from

15Some individual offers appear to make little sense. For example, some subjects submitted offers less
than cost and others submitted offers in excess of 300, but these are rare and thus are not included in the
analysis. A total of 37 of 1950 offers were dropped from auctions without quota (21 below cost, 16 above
300) and a total 17 of 740 offers dropped from auctions with quota (13 below cost, 4 above 300).
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Figure 3: Individual Offers from Experiments
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Notes: The top graphs show individual offers from experimental auctions plotted against sellers’ privately

observed costs together with fitted cubic polynomials of offer against cost. All experiments included 10

sellers, five of each type, with cost draws uniformly drawn from [0, 100] and [50, 150] respectively. The

top tow panels show offers from experiments without quota and the bottom two panels show offers from

experiments with quota. Different colors, point and line styles delineate different experimental sessions (i.e.,

participants are held fixed for a given color and point style). Offers below cost (21 without quota and 4 with

quota) and offers above 200 are not shown.
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Table 3: Summary of Experimental Offers

Type A Sellers Type B Sellers
Cost Quartile: 1st 2nd 3rd 4th 1st 2nd 3rd 4th

Without Quota (δ = 50)
Mean Cost 13.5 38.5 63.2 87.7 62.0 86.4 110.3 135.5
(SD Cost) (7.9) (6.7) (7.9) (6.8) (7.9) (6.7) (7.9) (6.8)

Mean Offer 81.6 83.6 90.3 99.8 86.7# 95.7# 118.3 144.0
(SD Offer) (21.3) (14.5) (16.7) (16.2) (14.6) (10.4) (16.8) (15.5)

N 242 241 241 242 237 237 236 237
With Quota (δ = 50)

Mean Cost 12.2 38.0 64.7 87.6 62.9 86.0 111.2 135.4
(SD Cost) (6.0) (8.5) (6.8) (7.5) (6.0) (8.5) (6.8) (7.5)

Mean Offer 64.5* 71.4* 81.6* 93.8* 82.7* 95.5 115.5 140.5
(SD Cost) (16.2) (14.4) (10.2) (11.5) (9.7) (12.6) (8.2) (13.2)

N 92 92 91 92 89 89 89 89

Notes: The table summarizes experimental outcomes from asymmetric procurement auctions with
ten sellers, five of Type A and five of Type B, each with one unit to sell. Type A sellers’ costs
are drawn randomly and independently from a uniform distribution on [0, 100]; Type B sellers’
costs are drawn from a uniform distribution on [50, 150]. The buyer (auctioneer) purchases six
units in each auction. In auctions without quota, the lowest six offers are accepted regardless of
type. In auctions with quota, the lowest six offers are accepted subject to the constraint that no
more than four of five offers from any one type are accepted. A (*) indicates quota offers that
are significantly less than offers without quota in the same cost quartile, with a p-value less than
0.005. In auctions without quota, a (#) indicates Type B offers that are significantly less than
Type A offers with the same distribution of costs, again with a p-value less than 0.005. Seemingly
ill considered offers—those less than cost or greater than 300—were dropped from the sample. A
total of 37 of 1950 offers were dropped from auctions without quota (21 below cost, 16 above 300)
and a total 17 of 740 offers dropped from auctions with quota (13 below cost, 4 above 300).
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Type A sellers with costs below 50 are 10 to 17 less in auctions with a quota as compared

to auctions without quota; offers from Type A sellers with costs between 50 and 100 are

7 to 9 less with quota as compared to auctions without quota. Thus, the prediction that

type-specific quotas increase competition among low-cost types and that this causes them

to submit more aggressive offers is firmly realized in the laboratory.

Experimental offers from Type B sellers in auctions with quota display the clearest de-

parture from theory, especially offers from cost draws in the first quartile (approximately

[50, 75]). In theory, these offers are higher than offers in auctions without quotas, because

the quota on Type A sellers artificially increases demand from B types. In experiments, how-

ever, offers from B types were lower in auctions with quotas than without quotas. Indeed, in

auctions with quota, Type B sellers submitted offers only slightly higher than those from A

types with similar cost draws, and not significantly so. Thus, in experiments, the “weakness

leads to aggression” phenomenon is just offset by increased demand from weaker B types,

where in theory greater demand from B types has a much larger influence on offers. This

phenomenon makes use of quota relatively more attractive to the buyer in practice than it

is in theory. This phenomenon observed for relatively low-cost B may also push A types

toward somewhat lower offers, as Type A sellers do make offers that are generally below those

predicted by theory.

Where the buyer gains from low-cost types submitting offers somewhat closer to their

costs, there are two tradeoffs associated with using quota to incite these lower offers. First,

high-cost sellers bid less aggressively, because the quota on low-cost types artificially increases

demand from high-cost sellers. In the experiments, however, offers from higher-cost Type B

sellers are still slightly lower than those without a quota. Second, and more importantly, ex

post the buyer potentially sacrifices a lower offer from an A type in favor of a higher offer

from a B type in order to enforce the quota. Despite these tradeoffs, the gains to the buyer

from lower offers exceeds the tradeoffs, with quota reducing the cost of procurement by 47.5

or 9.1% in comparison to auctions with Quota. In theory, the savings from quota conditional

on the same cost draws would have been just 2.5 (less than 0.5%). These statistics, reported

in table 5.2, do not account for order effects or variation across individuals or experimental

sessions.

It is also interesting to compare the social efficiency of auctions with and without quota,

both in the laboratory and in theory. These comparisons can be made by looking at the

average total cost of six sellers, reported in the last row of table 5.2. Because six units

are purchased in all auctions, thereby holding fixed the benefits of goods produced and
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Table 4: Basic Comparison of Theoretical and Experimental Auction Outcomes

Theoretical Outcomesa Experimental Outcomes
No Quota Quota No Quota Quota

Buyer’s Payment 533.7 531.3 520.0 472.5
Average Gain, Type A 37.2 32.0 32.7 23.5
Average Gain, Type B 7.3 9.7 5.9 4.9
Sellers’ Total Cost 311.0 323.2 326.9 330.4
a Here the theoretical outcomes are matched to the specific cost draws that came up during
the experiments and thus differ slightly from the values reported in Table 2 due to chance
variation in cost draws.

bought, social surplus is maximized when sellers’ total costs are minimized. In theory,

auctions without quota are the most socially efficient, although not perfectly efficient due to

the weakness-leads-to-aggression phenomenon, which makes offers slightly non-monotonic in

cost. In theory, the imposition of quota raises sellers’ total cost by 12.2 (323.2 versus 311.0),

even though the buyer gains slightly. The buyer’s gains are realized via lower surplus to

Type A sellers (32.0 versus 37.2 per seller) that are partially offset by higher gains to Type

B sellers (9.7 versus 7.3). In experiments, however, the buyer’s much more substantial gain

from quota (an average payment of 472.5 versus 520.0) comes at a lower social cost of just

3.5 (330.4 minus 326.9). In experiments, quota lowers Type A surplus more substantially

than it does in theory and slightly lowers Type B surplus as well.

While the difference in social costs between auctions with and without quota is smaller

in experiments than in theory, due to somewhat erratic offers in the laboratory (ie., apparent

random variation conditional on cost and type), social costs are somewhat higher overall in

the laboratory as compared to theory.

5.3. Regression Models of Sellers’ Offers

We use regression analysis to estimate offer tendencies more precisely and compare them

statistically across quota and no-quota auctions, and against theoretical offers derived above.

All specifications have the form:

Offersit = α+βOsit+I(Quota×Type)sitΓ+I(Quota×Type)sit×OsitΘ+controls+ εsit (3)

where O denotes the MEGD theoretical offer associated with the seller’s cost draw, type, and

whether or not a quota was imposed; I(Quota×Type) is vector of (0-1) indicator variables
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delineating seller type and whether or not an auction was imposed, and α, β, Γ, and Θ

are parameters. The subscripts s, i and t denote, respectively, the experimental session,

individual seller, and round number within a session. Under the null hypothesis that theory

is exactly correct, α = 0, β = 1 and all other coefficients, including the error variance, equal

zero. The coefficient vectors Γ and Θ allow departures from theory to vary across treatments

(quota or no quota) and for different seller types. In all specifications, the indicator variable

left out is for Type A sellers in auctions without quota, so α and β reflect this group. The

controls vary by specification and are used to account for round, individual and experimental

session effects. Some specifications account for these factors using fixed effects; others use

random effects.

A summary of results from offer-level regressions reported in table 5.3. The first specifica-

tion (column 1) is a baseline model that includes only an a round effect. The round variable

indicates the auction number within an experimental session and treatment. The second

specification (column 2) also includes fixed effects for each experimental session. The third

specification (column 3) interacts session effects and round effects, allowing each session to

have its own intercept and trend across repeated auctions. The fourth specification models

session-by-round effects as random effects rather than fixed effects, and allows these effects to

be correlated. The fifth and last specification (column 5) models individual seller-by-round

random effects. The random effects specifications may be more appropriate if attempting

to draw inferences about offer patterns for subjects not included in the experiment. Such

an interpretation requires an assumption that our subjects were drawn randomly from a

larger population, which was not the case. Subject participation was voluntary, and thus

unlikely representative, but we see no reason why selection might be biased toward a specific

kind of strategic behavior. While not testable, we find it plausible that selection effects are

statistically ignorable. We restricted the sample to offers from non-demo rounds that were

greater than cost and less than $300. Out of 2690 offers, this excludes 34 offers that were

less than cost and 20 offers that were greater than $300. Except for the R2 values, these

omissions have little influence on the results.

Although the data reject the theory in the literal sense, offers conditional on cost are

centered very closely around MEGD equilibria. This result is most true for Type A sellers in

auctions without quota. For this group, we fail to reject the null hypothesis that the mean

offer conditional on cost equals the theoretical offer (α = 0 and β = 1). We can see this

graphically in the top-left panel of figure 5.3. The fitted regression line is indistinguishable
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from the line where offer equals the theoretical offer.16 Still, while the theory seems to

provide some useful guidance about offer tendencies, variation around the theoretical offer

is not predicted by Bayesian Nash equilibrium, and so literal acceptance of the theory is

strongly rejected.

All specifications show somewhat larger differences from the theoretical predictions in

auctions with quota. Offers with quota generally have a lower intercept and increase more

than one-for-one with theoretical offers. Thus, offers with lower cost draws tend to be below

that predicted by theory and offers with higher cost draws tend to be above that predicted

by theory. This pattern can be seen both in the coefficient estimates and from inspection of

the lower two panels in figure 5.3, and holds up after taking into account round and session

effects. The net effect of quota is to lower the overall costs of procurement relative to theory,

because lower offers (and lower cost draws) are more likely to be accepted.

Figures 5 and 6 with show the relationship between theory and experimental offers for

each experimental session, after removing individual intercept and round random effects.

These are predictions from the model reported in column 5 of table 5.3. Theory predicts

that all offers would lie exactly along the diagonal of each panel in the figure.

Interestingly, while the round effect is both small and statistically insignificant by itself,

it is strongly significant when interacted with session or individual effects. When modeled as

a random effect, the standard deviation of the round effect, whether with outcomes that vary

across individuals or experimental sessions, is also a large and statistically significant. What

the data show is that, while offers often begin well above or below theoretical predictions,

they generally trend toward equilibrium predictions or a little below in successive rounds. In

quota sessions, however, offers are more likely to start low and trend up toward theoretical

predictions, while auctions without quota often started both above and below equilibrium.

We illustrate these effects graphically in the next section where we consider auction-level

regressions.

5.4. Regression Models of Buyer’s Total Payment

Here we examine the buyer’s total payment to sellers for the six units purchased. The unit

of analysis is therefore an auction, not an individual offer. For each experimental auction we

found the theoretical offer associated with each cost draw and type, selected the theoretically

winning offers, and calculated the total payment the buyer would have paid had all offers

16Note that the bunch of points lined up near the vertical axis follows from the fact that the theoretical
offer curve is generally flat over its lower portion.
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Table 5: Summary of Offer-Level Regressions

OLS Models Mixed Effects Models
(1) (2) (3) (4) (5)

Fixed Effects Estimate/(Standard Error)

Intercepta -10.22 -12.40 -10.62 -12.69 -10.09
(6.54) (5.83) (6.03) (6.30) (5.41)

Rounda -0.11 -0.09 -0.16 -0.06 -0.10
(0.06) (0.05) (0.24) (0.13) (0.07)

Theoretical Offer 1.10 1.13 1.11 1.12 1.11
(0.07) (0.06) (0.06) (0.06) (0.06)

No Quota & Type B 7.99 12.19 12.24 12.41 9.50
(6.97) (6.13) (6.09) (6.09) (5.77)

Quota & Type A -76.9 -66.6 -68.3 -68.0 -63.9
(12.8) (11.3) (11.2) (11.6) (10.4)

Quota & Type B -23.2 -17.2 -18.2 -19.5 -22.4
(8.2) (7.2) (7.2) (7.8) (6.8)

Theory× -0.07 -0.12 -0.11 -0.12 -0.10
No Q & Type B (0.08) (0.07) (0.07) (0.07) (0.06)

Theory× 0.86 0.79 0.81 0.79 0.72
Quota & Type A (0.15) (0.13) (0.13) (0.13) (0.12)

Theory× 0.15 0.13 0.14 0.13 0.14
Quota &Type B (0.08) (0.07) (0.07) (0.07) (0.07)

Session Fixed Effects No Yes No No No
Session × Round Effects No No Yes No No
Session × ln(Round) Effects No No No No No

Random Effects Estimate/(95% Confidence Interval)

SD Intercept 10.7 13.7
Group = Session in (4), Individual in (5) (7.45,15.3) (12.1,15.6)

SD of Round 0.47 0.61
(0.28,0.81) (0.46,0.81)

Corr(Int, Round) -0.89 -0.92
(-0.97,-0.65) (-0.97,-0.79)

Adjusted R2 0.682 0.755 0.760
RMSE 14.56 12.74 12.58 12.57 10.71
a For models with session or individual fixed effects or random effects, the coefficient and standard
error reported for the intercept and/or round is for mean of the effect across all individuals or sessions.
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Figure 4: Comparison of Experimental and Theoretical Offers by Treatment and Type
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Notes: The figure shows experimental offers in relation to theoretical (MEGD) offers by treatment (Quota

or No Quota) and type of seller (A or B). The blue lines show fitted regression lines; the red dashed lines

are where Theory = Actual.
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Figure 5: Offers Versus Theory by Session Without Random Effects: No Quota
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Notes: The figure shows theoretical offer predictions in relation to offers from actual experiments with session

and round random effects removed. Each panel shows offers from an individual experimental session without

quota. A perfect diagonal line indicates where actual offers equal theoretical offers.
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Figure 6: Offers Versus Theory by Session Without Random Effects: With Quota
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Notes: The figure shows theoretical offer predictions in relation to offers from actual experiments with session

and round random effects removed. Each panel shows offers from an individual experimental session with

quota. A perfect diagonal line indicates where actual offers equal theoretical offers.
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accorded exactly with theory. Our analysis focuses primarily around the difference between

the actual amount the buyer paid in relation to the theoretical payment. A summary of

these basic results is presented in figure 7, which shows actual total payments in relation to

theoretical payments, with the kind of auction (with or without quota) indicated by point

color. Note that the only factors driving variation in the theoretical total payment are

random variation in cost draws and whether or not the auction has type-specific quotas.

The models, summarized in table 6, regress the actual total payment against the theo-

retical payment and auction characteristics. All models have the form:

Paymentst = α + βPst + γI(Quota)st + θI(Quota)stPst + controls + εst (4)

The specifications are similar to the offer-level regressions, except without type effects, be-

cause both types are represented in every auction. The indicator variable is therefore a scalar

for whether or not a quota is imposed, not a vector crossing both auction and seller types.

The variable P represents the theoretical payment—that predicted by MEGD strategies con-

ditional on cost draws for the particular auction, with or without quota. The subscripts s

and t denote the session and round, respectively, and controls include different specifications

of round and session effects. We also report regressions that omit the theoretical payment

and instead substitue the average cost draws for each seller type. These regressions provide

direct evidence of the overall empirical effect of quota on procurement cost, not just the

difference between the theoretical and empirical effect of quota.

Results are reported in table 6. Column 1 reports a basic regression of the total payment

against P , the quota indicator, round, and session fixed effects. Column 2 adds session

fixed effects. Column 3 adds session-specific round effects. Column 4 models session and

session-specific round effects as random rather than fixed. Columns 5 and 6 are like models

reported in columns 3 and 4 except the theoretical payment is replaced with controls for

average Type A and Type B cost draws.

The importance of the interaction effect between round and session effects is shown by

the increase in R2 in columns 2 and 3 and strong statistical significance of the random

round effects in columns 4 and 6. It is also illustrated by the sharp reduction in RMSE. We

illustrate these effect in figure 8. The figure plots the different between the experimental

payment and the actual payment in relation to round number. When we connect individual

sessions with line segments, it is clear how the buyer’s total payment converges toward the

theoretically predicted payment, or a bit below, in later rounds.

Because offers are highly correlated across experimental sessions and not all sessions
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Figure 7: Buyer’s Actual Total Payments in Experiments in Relation to Theoretical Payments
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include both quota and no-quota treatments, it is important to consider whether session

effects confound the overall effect of quota or make quota effects more uncertain. The

random effects models (columns 4 and 6) allow us to draw some inferences about the effect

of quota on the population of possible sessions that might have occurred.

After accounting for session effects, we generally find similar results regardless of specifi-

cation. While the buyer’s savings from quota are significantly less than predicted by theory,

they are not as large as suggested by the summary statistics, due to the large influence of

session effects. In theory, quota saves about 5 experimental dollars, or about one percent

of the cost from an auction without quota. The empirically estimated savings are about

13. The additional savings generally come from lowest cost sellers making offers lower than

predicted by theory. This is indicated by the negative coefficient on the quota indicator

variable and and positive value on quota interaction terms.

One indication for the usefulness of the theoretical predictions comes from comparing

columns 3 and 5 with columns 4 and 6, respectively. These pairs of models are similar

except that, in the latter two cases, cost draws for each type are substituted for theoretical

predictions used in the first two cases. These comparisons show that the two models using

theoretical predictions fit the data better than models using raw cost draws, even though

the models with raw cost draws use more degrees of freedom.

6. Conclusions

This paper studies a new kind of auction for asymmetric, multiple-unit procurement

auctions and compares this auction, both theoretically and experimentally, to a standard

pay-as-offered multiple-unit procurement auction. The new auction simply imposes a quota

on the number or share of offers accepted from each identifiable class or type of sellers.

The quotas implement a discriminating mechanism that will generally allow a buyer to

reduce procurement costs in a manner that mimics bid preferences, which have been studied

in single-unit asymmetric auction settings. A key advantage to quotas over other forms

of type discrimination is that the buyer can save costs without knowing the underlying

cost distributions of different types, which types have lower costs, or whether there are

even significant differences in cost distributions across types. If observed types are actually

symmetric then there is almost no loss of efficiency or of procurement cost from using quotas;

conversely, if asymmetries are large, the buyer’s savings from quota could be substantial.

In the laboratory, we find offers appear roughly consistent with theory but differ in two

key respects. First, unsurprisingly, individual offers vary randomly around the theoretical
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Table 6: Summary of Auction-Level Regressions

Regression Model
Explanatory (Dependent Variable: Total Payment to Sellers)
Variable (1) (2) (3) (4) (5) (6)

Estimate/(Standard Error)

Intercept
-92.1 -163 -23.5 426 -46.2 417
(149) (68.1) (287) (68.1) (81.9) (28.7)

Round Number
0.869 0.534 0.402 0.521 0.461 0.59

(0.711) (0.416) (1.69) (1.74) (1.35) (1.4)

Theoretical Payment
1.13 1.27 1.01 1.06

(0.278) (0.16) (0.15) (0.148)

Quota
-360 -234 -386 -183 -366 -179
(235) (134) (124) (36.2) (124) (36.2)

Quota×Theoretical Payment
0.593 0.427 0.709 0.67

(0.442) (0.252) (0.234) (0.233)

Average Cost Type A Sellers
0.983 0.954

(0.170) (0.170)

Average Cost Type B Sellers
0.412 0.513

(0.174) (0.171)

Quota×AC Type A
0.661 0.715
(0.31) (0.31)

Quota×AC Type B
1.38 1.3

(0.311) (0.31)
Adjusted R-squared 0.225 0.762 0.810 0.799
RMSE 56.2 30.4 26.6 27.2 26.7 27.4
Session Fixed Effects No Fixed Fixed Fixed Random Random
Session-Specific Round Effects No No Fixed Fixed Random Random
Theoretical Savings

4.98 4.98 4.98 4.98 4.98 4.98
from Quota

Estimated Savings
48.79 11.72 12.96 12.29 13.43 13.11

from Quota

Notes: The table reports regressions of the buyer’s payment (the sum total paid to the six winning sellers)
against the theoretical payment and other explanatory variables. If sellers behaved perfectly according
to theory, the coefficient on Theoretical Payment would be 1, all other coefficients would be zero, and
the R2 would be 1. Thus, regressions in columns (1) through (3) estimate the effect of quota on buyer’s
payment after accounting for the theoretical influence of quota. Regressions in columns (4) through (6)
estimate the overall influence of quota on buyer’s payment. In models with session effects, the reported
intercept and/or round effect is for the estimated mean across sessions. Estimated savings from quota
include both theoretical and estimated empirical effects of quota. The RMSE is the standard deviation
of residuals or, in models with random effects, the standard deviation of residuals conditional on random
effect outcomes.
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Figure 8: Buyer’s Experimental Payment Less Theoretical Payment by Auction Round
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Notes: The figure shows the difference between the buyer’s actual payment and the MEGD theoretical

payment in relation to the auction round. Each line connects auctions from a single experimental session

with a fixed group of sellers.
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offer conditional on cost; second, offers with quota tend to be somewhat less than predicted

by theory, especially for low-cost sellers, thereby yielding greater savings for the buyer than

predicted by theory. While buyer savings come at a cost to social efficiency and gains to

sellers, efficiency losses from quota are also smaller in the laboratory than they are in theory.

A key challenge to conducting this study was deriving clear theoretical predictions to

compare with experimental outcomes. Solving for Bayesian Nash equilibria in asymmetric

auctions is a notoriously difficult problem that, to our knowledge, had not previously been

done in a multiple-unit setting. We developed a new technique for solving close approx-

imations to these equililbria. The basic idea to the approach is to impose a flexible yet

constrained parametric offer function for each seller type and then select parameterizations

of those functions that minimize the expected gains of a randomly chosen seller unilaterally

deviating from their constrained strategy. We were able to find such constrained strategies

that brought these expected gains from unilateral deviation extremely close to zero (ie., true

equilibrium). Furthermore, the approximate equilibrium strategies predicted actual offers

better than reduced-form regressions of offers on observed cost. This approach to solving

asymmetric auctions may be useful in many applications.

One potentially interesting application for auctions with quota could be for procurement

of environmental or ecosystem services, such as carbon sequestration. Such procurements

now take place on a global scale, with a few large-scale buyers buying from many hetero-

geneous sellers that differ in clearly discernable ways. For example, European brokers may

purchase carbon offsets from farmers in Brazil who offer to sequester carbon by returning

cropland or pasture to forests. Opportunity costs of providing such services surely vary

widely across sellers in ways that European buyers may have a difficult time ascertaining.

By placing a quota on the share of offers accepted from any observationally similar group

of sellers (say, a given land disposition within a province or county), it will encourage more

competition among those sellers, thereby enticing them to make offers closer to their op-

portunity costs. Without such a quota, sellers would be enticed to make offers near their

expectation of the marginal offer accepted, which may be far above their costs.

Although our analysis considers a situation with just two types of sellers, in such an

application it is easy to see how the auction might generalize to a situation with many types,

and lead to proportionately much greater savings for the buyer. The key feature to notice is

that in auctions with quota, offers from a given type are generally less than the highest cost

possible from sellers of that type. Thus, if we imagine an environment with a larger number

of types–say tens or even hundreds–spanning observable differences in location, then costs
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may vary more between types than they do within types. In this kind of situation, significant

savings for the buyer might be achieved with minimal loss of efficiency using quotas that

limit acceptance to all but a small share of sellers from each type.

A quota mechanism like the one just described would help to address a problem widely

described as “non-additivity” in the payments for ecosystem services literature [22, 23, 24].

Non-additivity involves payments for ecosystem services that would have been rendered

even in the absence of payment, i.e., at zero cost. Thus, with arms-length buyers and

unobservable opportunity costs, attempts to make payments for ecosystem services “non-

additive” amounts to an effort to price discriminate across sellers of those services. We have

shown that auctions with quota are a simple and effective way of discriminating in this way.

With the idea of looking toward larger scale auctions, such as the global purchase of

carbon offsets, future work may further explore whether quota might increase the efficiency

of procurement. Auctions without quota are not strictly efficient in an asymmetric setting

due to the non-monotonicity of offers that comes from the “weakness leads to aggression”

phenomenon, wherein buyers of a higher-cost type make offers below those of lower-cost types

but having the same privately observed cost—a phenomenon we observe both in theory

and in the laboratory. A modest quota that just restores monotonicity of offers might

therefore increase efficiency while simultaneously reducing the buyer’s total payment for a

given amount of good or service purchased. While the quota selection mechanism involves its

own inefficiencies, these could be modest in a large-scale auction wherein a highly-effective

quota may need only curtail a small percentage of sellers from any single observable type.
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Appendix A. Experimental Auction Instructions and Design

Here we screen shots from our custom-made experimental computer software. Figures A.9

through A.12 show the on screen instructions. These describe how the auction works and

how subjects submit offers. Instructions are also read out loud and participants have an

opportunity to ask questions. After going through the instructions, there is a demo round,

followed by a debriefing screen that quizzes the subject to be sure they understand the rules.

A subsequent screen corrects their mistakes and explains why they may have answered

incorrectly.

Figure A.13 shows offer screens for each kind of auction in our experiments (without and

with quota, respectively). Note that the subject can see the outcome from previous round

and can click to open a screen that summarizes outcomes from all earlier rounds.
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Figure A.9: Instruction Screens 1–3
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Figure A.10: Instruction Screens 4–6
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Figure A.11: Instruction Screens 7–9
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Figure A.12: Instruction Screens 10 and Post-Demo Debriefing
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Figure A.13: Seller’s Offer Screens

Without Quota

With Quota
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Appendix B. Algorithm for Finding MEGD Offer Strategies

The heart of the procedure for finding approximate equilibria involves calculating the

expected gains from unilaterally deviating from an a given constrained parametric strategy.

In principle, the constrained strategy may be of any form. For the main part of our analysis

we use restricted cubic splines with six knots plus an intercept for each type of seller. We also

forced the offers from Type B sellers to equal cost at the highest possible cost draw, which

is implied by theory. Because restricted cubic splines require two less parameters than the

number of knots, this functional form involved five parameters for Type A sellers plus four

parameters for Type B sellers. Given any particular selection of parameters, the expected

gains from unilateral deviation are calculated as follows:

1. For each type of seller, develop an index across the range of possible cost outcomes. Our

index included 100 vales that were equally spaced from the lowest to highest possible

outcome. Note that for non-uniform cost distributions, distribution quantiles would

be preferred to equally-spaced values.

2. Simulate 10,000 auctions by pseudo-randomly drawing costs for each type of seller and

apply the constrained strategy as parameterized.

3. For each seller type, estimate the probability that any offer will be accepted using

the pseudo-random draws for N-1 sellers. Note that because each seller knows their

own cost draw, the probability density function of acceptance is a function of the

N-1 other sellers, not all N sellers. Furthermore, note that this density is somewhat

different for each type of seller since each type possesses different information. We

estimate this density using the R package logConDens developed by Kaspar Rufibach

and Lutz Duembgen. This package computes the maximum likelihood estimator of a

non-parametric density that is assumed to be log-concave.

4. Given the estimated density functions, calculate the optimal offer for each index value

of cost for each seller. Using the optimal and constrained offer for each index value,

calculate the gains from unilateral deviation from the constrained strategy for each

cost index value for each type of seller.

5. Calculate the average of deviation gains across all types and cost index values. This

gives the expected gains from unilateral deviation.

The remainder of the algorithm mainly involves minimization of the function described

above. The steps are as follows:

1. Pick a functional form for the offer function for each type.
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2. Select an initial guess for the parameters in the offer function by assuming optimal

strategies from a similar symmetric auction.

3. Use a Nelder-Mead algorithm to find the parameters that minimize the expected gains

from unilateral deviation.

4. We re-optimized several times, using the solution from the previous optimization as

starting values for the next, repeating until further objective minimization declined by

less than 2% of the objective value.
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