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Abstract

We estimate sibling correlations in health status using the Panel Study of

Income Dynamics. We use Bayesian methods to estimate the covariance struc-

ture of a system of latent variable equations. Across a battery of outcomes,
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we estimate that between 50% and 60% of health status can be attributed

to familial or neighborhood characteristics. Taking the principal component

across all outcomes, we obtain a slightly lower sibling correlation of about

45%. These estimates, which are larger than previous estimates of sibling

correlations in health that rely on linear models, are more in-line with sibling

correlations in income and suggest that health status, like other measures of

socioeconomic success, is strongly influenced by family background. There-

fore, efforts to improve the circumstances of families and communities may

potentially lead to improved childhood health today and also reduce future

health disparities.

Key words: Sibling correlations, Intergenerational mobility, Health

JEL Classification: I0, I12, J0, D3, J62
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1 Introduction

How important are family background and neighborhood influences in explaining

health disparities? This question is increasingly salient with the rise of inequality

and the growing gap in resources between families in many industrialized countries.

If family and community influences during childhood play a large role then we may

anticipate that health disparities are likely to grow in coming decades as rising in-

equality between families is manifested in adult health outcomes. Therefore policies

that address the growing disparities between families may also be a form of "health

policy" in that it may improve the health of the future population with implications

for social safety nets. A growing literature has also linked childhood health to fu-

ture economic success, e.g. Almond and Currie (2011), suggesting that policies that

reduce health disparities may also reduce inequality in the future.

More generally, social scientists have become increasingly interested in intergener-

ational mobility with respect to socioeconomic status. Clearly, health is an important

component of socioeconomic status but intergenerational influences on health have

been much less studied than other key measures of status such as income, education

and occupation.

As an empirical matter, it is very challenging to measure the importance of family

background on health. One important issue is how exactly to measure family back-
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ground. A small but notable literature has used sibling correlations as a catch-all

measure of family background intended to capture all influences shared in common

by siblings. This sidesteps the difficulty of having to measure each of the multitude of

possible measures of family background —many of which may be unavailable in most

datasets. Indeed, Bjorklund and Jantti (2012) emphasize that sibling correlations

are in general, much more useful than the traditional measures of intergenerational

associations for studying intergenerational mobility.

A second critical issue is how exactly to measure health. Standard datasets with

health outcomes typically contain dichotomous measures (e.g. asthma, disability,

etc.) that might occur with low frequency. Alternatively, surveys sometimes collect

relatively blunt measures such as self reported health status on a categorical scale.

How can one best use such measures to get at a more ideal concept of underlying

or latent health status? This paper develops the econometric tools that can be

used to estimate sibling correlations in health that overcome some of the limitations

encountered in previous work that, for example, uses linear models in a situation

where they clearly are not appropriate.

Specifically, we consider the inter-generational transmission of health status by

estimating sibling correlations in a battery of health measurements for children in

the Child Development Supplement of the Panel Study of Income Dynamics (PSID-
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CDS). Each of these measurements is modeled as being determined by a latent vari-

able. The arbitrary covariance structures for the individual- and family-specific ran-

dom effects are estimated using Bayesian methods. To account for the possibility

that the measurements are proxies for a more fundamental latent health variable,

we also estimate sibling correlations in the principal components of the covariance

matrices for the two types of random effects.

Our Bayesian estimates indicate that sibling correlations for a variety of health

measures range between 0.5 and 0.6 with few exceptions. This suggests that over

half of a child’s health status can be attributed to familial or community influences.

These estimates are substantially larger than those from Mazumder (2011) who uses

linear models to estimate sibling correlations in health also using the PSID-CDS;

his estimates for health outcomes tend to be on the order of 0.1-0.2. Notably, our

estimates of sibling correlations in health are more in-line with estimates of sibling

correlations in income from Mazumder (2008) who obtains an estimate of 0.5.

Looking across all of the health outcomes using principal components analysis,

we obtain a sibling correlation of 0.45 which is slightly lower than when we consider

only a single health outcome. Here we can draw an analogy to Spearman’s G-factor

for intelligence where a single incorrect response on an exam does not necessarily

indicate poor intellectual capacity, overall. Similarly, we may think of our principal
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component as a measure of general health status so that a high sibling correlation

in one particular outcome (e.g. anemia) does not necessarily indicate a high sibling

correlation in overall health status. On the whole, our results indicate that the role

of family and community influences on health status is large and on par with their

role in determining economic status.

The rest of the paper proceeds as follows. Section 2 describes the structure of

our model using a SUR framework. Section 3 describes the method of Bayesian

inference to estimate the parameters. Section 4 describes how we construct our

sibling correlation measures. Section 5 describes the PSID-CDS data. , Section 6

presents the key results. In section 7, we conclude.

2 A SUR Model of Sibling Correlations

We consider a set of  binary measures of health which we will index with  ∈

{1 }. We observe these measures for sibling  ∈ {1  } in family  ∈

{1  } at time  ∈ {1  }.1 We denote the th measure for individual  in

1We subscripted  with  to denote that different measurements are observed for differing

lengths of time.
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family  at time  with . Each outcome is determined by a latent variable

∗ = β
 + 

 +  +  (1)

where

 = 1
¡
∗  0

¢


The first term on the right-hand side, , is 1× vector of observable heterogeneity.

Because most observable variables such as parental characteristics do not change over

time, we only include age and a constant in . The term, 

 , is a family-specific

effect. Next,  , is an individual-specific effect. Neither of these varies with

time. The final component is a time-variant idiosyncratic residual. Each of these

components is specific to a particular measurement and, hence, superscripted .

We define α ≡
¡
1   




¢0
, γ ≡

¡
1   




¢0
and u ≡ (11  

1
1



 1  
 0


)0 Note thatα and γ are×1 and u is ×1 where  ≡
X

=1

.

In practice,  can change across individuals and families but we do not notate this
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to economize in the exposition. Next, we assume that

⎛⎜⎜⎜⎜⎜⎜⎝
α

γ

u

⎞⎟⎟⎟⎟⎟⎟⎠ ∼ 

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝
0

0

0

⎞⎟⎟⎟⎟⎟⎟⎠ 

⎛⎜⎜⎜⎜⎜⎜⎝
Σ 0 0

0 Ω 0

0 0 I

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠  (2)

We normalize the variances of the idiosyncratic components to unity and leave Σ

and Ω unrestricted.

It is useful to write this system as a SUR model in the latent variable. Defining

H∗ ≡
¡
∗11  

∗1
1

  ∗1   
∗


¢0
and x ≡

¡
01  

0


¢0
, we can write

H∗ =

⎛⎜⎜⎜⎜⎜⎜⎝
x1 · · · 0

...
...

0 · · · x

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
β1

...

β

⎞⎟⎟⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎜⎜⎝
11 · · · 0

...
. . .

...

0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎠γ+

⎛⎜⎜⎜⎜⎜⎜⎝
11 · · · 0

...
. . .

...

0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎠α+u

where 1 is a -vector of ones. We can write this more compactly as

H∗ = Xβ +Pγ +Pα + u

where H∗ and u are  × 1, X is  ×  and P is  ×  . If we define

H∗ ≡
³
H∗01  H

∗0


´0
and u ≡

³
u01  u

0


´0
which are both  × 1, then we
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can write

H∗ = Xβ +
£
I
⊗P¤γ+

£
1
⊗P¤α + u

where X≡
³
X0
1  X

0


´0
which is  × and γ ≡

³
γ01  γ

0


´0
which

is × 1. Note that the second term on the right-hand side contains the identity

matrix whereas the third term contains a vector of ones.

Finally, we define  ≡
P
=1

 and stack one more time over families to obtain

the full SUR system. Defining

H∗ ≡ (H∗01  H∗0 )0| {z }
×1



X≡(X0
1 X

0
 )
0| {z }

×



G ≡ I ⊗P| {z }
×



γ ≡ (γ01 γ0 )0| {z }
×1



A ≡

⎛⎜⎜⎜⎜⎜⎜⎝
11 ⊗P 01×

. . .

0× 1
⊗P

⎞⎟⎟⎟⎟⎟⎟⎠
| {z }

×


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α ≡ (α01 α0 )0| {z }
×1

and

u ≡ (u01 u0 )0| {z }
×1



we can write

H∗ = Xβ +Gγ +Aα+ u (3)

The task ahead will be to employ methods to estimate and conduct inference on Σ

and Ω and their roots.2

3 Bayesian Inference

The posterior distribution of the model’s parameters will be of the form

 (ΣΩβ γαH∗|HW) (4)

where the posterior distribution also includes the latent variable H∗and the indi-

vidual and family-specific effects, γ and α, and W ≡ [XAG]. This posterior

distribution has two important features. The first is that, because the latent vari-

2In the model as written, we have a constant,  individual fixed effects and  family fixed

effects which are not separately identified. So, in what proceeds, we will estimate ( − 1) family

effects and ( −  ) individual effects.
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able H∗ is unobserved by the econometrician, it must be simulated. This can easily

be done within the Gibbs sampler by employing the data augmentation procedure

first described by Albert and Chib (1993). The second is that once we have simulated

the latent variable, we can condition on it as if it was data.

Conditional on H∗, the model will then have the following hierarchical structure:

 (ΣΩβ γα|H∗W) ∝  (H∗|ΣΩβ γαW)×
Y
=1

−1Y
=1


¡
γ |Ω

¢ −1Y
=1

 (α |Σ)×

 (β)  (Σ)  (Ω) 

The first term on the right-hand side is the likelihood of the latent variable which is,

in fact, the likelihood for the Classical Fixed Effects model in the latent variable. The

second term is the prior on the family and individual specific fixed-effects in equation

(1) and is given by the distribution in equation (2). The final term includes the

priors on ΣΩ and β. We use the following conjugate priors:

β ∼ 
¡
βH−1

¢
Σ ∼  (S )

Ω ∼  (V ) 
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Note that the second term is conditional on Σ and Ω and that the terms,  (Σ) and

 (Ω), are, in fact, priors on priors or hyperpriors.3

Since conditioning on the latent variable reduces the model to a standard hier-

archical linear model or the variance-components model discussed in Browne and

Draper (2006), we can easily estimate it using the Gibbs sampler. We will proceed

in a series of steps. Before we delineate these, we will first discuss some key condi-

tional distributions that will be needed to implement the Gibbs sampler. First, we

will sample Ψ ≡ [β0α0γ0]0 so that the regression coefficients and the fixed effects

are sampled as a single block.4 The conditional distribution for Ψ is then given by

Ψ|ΣΩXH∗ ∼ 
¡
Ψ∗H

−1
Ψ

¢
(5)

3Because we have a large number of families in our data, the choice of the prior is not terribly

important as it is well known that the posterior and likelihood functions become closer together as

the sample size increases (see Theorems 3.4.2 and 3.4.3 from Geweke (2005)).
4In practice, we also experimented with sampling β, α and γ separately. It turned out that

this was slightly faster because it required the inversion of smaller matrices. So, this is what we

used although to conserve on notation, we only describe sampling them as a single block in the

manuscript. However, the basic ideas are the same in either case.

12



where

HΨ ≡W0W+HΨ

HΨ ≡ (HΣ
−1 Ω−1)

bΨ ≡ (W0W)
−1
W0H∗

Ψ∗ ≡ H−1Ψ W0W bΨ

Now that we have sampled (β0 α0γ0)0, we can sample from the conditional posterior

of Σ is given by

Σ|Ωβ αγ ∼ (Σ∗ ∗) (6)

where

Σ∗ ≡
−1X
=1

αα
0
 + S

∗ =  − − 2 + 

Similarly, the conditional posterior of Ω is

Ω|Σβ αγ ∼ (Ω∗ ∗) (7)
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where

Ω∗ ≡
X
=1

−1X
=1

γγ
0
 +V

∗ ≡  −  − − 1 + 

To sample from the posterior in (4), we will sample from these conditional distribu-

tions inside of the Gibbs sampler. This will work in the following steps.5

1. Initialize
¡
Σ0Ω0β0 γ0α0

¢
.

2. Sample from 
¡
H∗|Σ−1Ω−1β−1γ−1α−1 HW

¢
 Specifically, draw

 values of H∗ from the conditional distribution which will be a truncated

Normal distribution. Once these are drawn, they should be treated as data.

This is the data augmentation step.

3. Sample from 
¡
Ψ|H∗Σ−1Ω−1HW

¢
using the distribution in (5).

5To see why this is the number of degrees of freedom, note that the part of the conditional

posterior for Σ ignoring the prior is

|Σ|− 1
2
(−1)

exp

⎛⎝

⎛⎝Σ−1−1X
=1

αα
0


⎞⎠⎞⎠ 

If look at the definition of the Inverted Wishart from p. 305 of Bauwens, Lubrano, and Richard

(1999), we see that

 − 1 =  + + 1

so that the degrees of freedom coming from this portion of the posterior must be  − − 2. The
calculation for Ω is similar.

14



4. Sample from


¡
Ω|γαβH∗Σ−1HW

¢
 (Σ|ΩγαβH∗HW)

using the distributions in (6) and (7).

5. Go back to step 2 and repeat.

4 Measuring Sibling Correlations

We propose two ways of measuring sibling correlations. The first is the most straight

forward. For each of the  health measurements, we sample

 ≡ 

 + 
(8)

and conduct inference on the correlation for theth health measurement. However,

an alternative is to view the different health measures as proxies for a latent health

variable. So, ultimately, we may not care about the intra-household correlation

in any given measure e.g.  , but rather the sibling correlation in some broader

measure of latent health. To aid us in this endeavor, we will require some way of
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reducing the information in the matrices Σ and Ω. If we let Σ∗ and Ω∗ denote the

correlation matrices for α and γ , probably, the most common way of doing this

is to conduct a Principal Components Analysis (PCA) of Σ∗ and Ω∗ and compute

the sibling correlations for differing components of these matrices.6

To fix ideas, we will employ spectral decompositions and write

Σ∗ = Γ∆Γ0

and

Ω∗ = ΠΛΠ0

where∆ = V (w) and Λ = V (z). The matrices,∆ and Λ, are diagonal matrices

with the eigenvalues ofΣ∗ andΩ∗ along their diagonals. We denote these eigenvalues

by 1   and 1   . The matrices Γ and Π each contain the corresponding

eigenvectors of Σ∗ and Ω∗ as their columns. We normalize each decomposition so

that the eigenvalues are in descending order.

These new intra-household correlations that pool information across health out-

6Because we are not interested in the correlation structure of H∗ i.e. which common latent
factors can explain a larger number of outcomes, factor analysis is not appropriate for our task.

Indeed, as stated by Lawley and Maxwell (1971) on p. 3, “whereas as principal component analysis

is variance-oriented, factor analysis is covariance- or correlation- oriented.”
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comes can now be defined. Specifically, we will consider

 =

X
=1



X
=1

 +

X
=1



 (9)

So, if  = 1 then we consider the sibling correlation in only the principal component,

whereas if  =  then we consider the correlations in all of the components. For

each draw of the matrices, Ω andΣ, from the posterior, we will compute  to obtain

the posterior distribution of our measure of the sibling correlation. The main idea

of this exercise, essentially, is to operationalize the notion of "
Σ

Σ+Ω
" into a single

number.

5 Data

As discussed above, we employ the PSID-CDS on children 18 years of age or younger.

The data come from the years 1997, 2002/2003 and 2007/2008. We used the PSID-

CDS to measure a battery of health outcomes which are listed in Table 1 together

with their descriptive statistics. These measures are binary indicators for various

conditions, disabilities or other outcomes pertinent to a child’s health. Most of

them are self-explanatory except for Self-Reported Health Status (SRHS) which is
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a categorical variable in which the respondent classified her own health as excellent

(SRHS = 1), very good (SRHS = 2), good (SRHS = 3), fair (SRHS = 4) and poor

(SRHS = 5). In our analysis, we will break the SRHS measure into three dummy

variables indicating SRHS greater than or equal to 2,3 or 4. As discussed above,

the first stage of the hierarchical model is essentially a Classical Fixed Effects model

and so, there is no need to include time invariant characteristics in it. As such,

the only explanatory variable in the model (other than a constant) is age and its

descriptive statistics are reported in Table 2. Finally, we also estimate the model

for certain subsets of the data. For these, we stratify the data by the average of

parental income over the child’s duration in the sample or by gender.

In Table 3, we report the number of observations that we have for each of our 10

measurements for the first, second and third years present in the sample. For the

first year that the respondent was present, which we call the baseline, we have 3235

observations. Note that the first year present need not be 1997 since many children

in our data were born after this year. In total, we have data on 3235 individuals in

2173 households.

6 Results

6.1 Checking Convergence
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We ran the Gibbs sampler for 20,000 iterations. To gauge the convergence of the

sampler, we employed the CUMSUM statistic from Yu and Myckland (1998) which

is given by

 =

Ã
1



X
=1

 − 

!


where  and  are the mean and the standard deviation for all 20,000 iterations.

If the sampler converges to a stationary distribution then  will converge

smoothly to zero. We report the  statistics in Figure 1 for the elements

of β and the diagonal elements of Σ and Ω The figures show a smooth convergence

towards zero as should be the case if the sampler converges. To account for the

“burn-in” phase of the sampler in which it is still converging, for the coming results,

we do not use the first 1000 iterations which this figure indicates may be a bit off

from the limiting distribution. In Figure 2, we report the time series for all 20,000

iterations for the diagonal elements of Σ and Ω and the three highest components of

the corresponding covariance matrices. The figure reveals that, from an early point

in the sampler, the distribution is stationary.

Finally, in Table 4, we estimate an AR(1) model of the form

 = 0 + 1−1 + 
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where  represents a sampled parameter at iteration  using OLS and computing

Newey-West standard errors. We estimate 1 for the diagonal elements of Σ and Ω

as well as for the sibling correlations, . The results indicate that all of the estimates

of 1 are all significantly below one but do indicate a fair amount of persistence in

the sampled parameters.

6.2 Core Results

Our core results can be found in Table 5 where we report the mean, median and

standard deviation of the sibling correlations defined in equation (8) for each of the

twelve outcomes that we consider. We also report the sibling correlations that are

based on the principal components defined in equation (9) at the bottom of the table.

To provide the reader with a visual idea of the distribution of these correlations, we

plot their distributions in Figure 3 using box plots.

The table and the figure reveal that the sibling correlations for all the outcomes

tend to be between 0.45 and 0.75 indicating that at least half of a child’s latent health

can be attributed to familial or environmental circumstances. The medians and the

means are virtually identical indicating that the distribution of the correlations is

highly symmetric.

When we look at the correlations based on the components of the covariance
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matrices at the bottom of the table, we see that they are substantially smaller than

for any one outcome; they are now just below 50%. Perhaps this is not surprising

since these correlations reflect a deeper notion of health status. Just because a

sibling pair has a high propensity for experiencing a particular outcome does not

imply that they have a similarly high propensity for experiencing all of the outcomes

that we consider which suggests that the correlation in the principal components

should be smaller.7

6.3 Demographic Subsets

We also estimated the model for certain demographic subsets. The results by gender

are reported in Table 6 and Figure 4. On the whole from looking at the table, it is

hard to tell if the correlations are higher for boys or girls. However, looking at the

correlation based on the first principal component, 1(which may be viewed as the

best summary of the available information), we do see that the correlation for girls

is 0.500 whereas it is 0.473 for boys. A formal test that the means of the sibling

correlations for boys and girls is different that utilizes Newey-West standard errors

indicates that these difference are indeed statistically significant (  0000).8

7We conducted Monte Carlo experiments and found no issues with our Bayesian estimation

procedure. The Gibbs’ sampler that we employed converged to a variety of hypothetical data

generating processes. In addition, we also experimented with a number of starting values for the

Gibbs’ sampler and this did not affect convergence.
8Note that Table 6 reports the standard deviations not standard errors.
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We also estimated the model by parental income quartile. We do not report

these results to save space but they are available in an on-line appendix. On the

whole, these results did not turn up any salient patterns.

6.4 REML Estimates

We now present a set of estimates of sibling correlations from our data using Re-

stricted Maximum Likelihood (REML) which has been commonly used in the liter-

ature.9 Specifically, we estimate a model of the form

 = β
 + 

 +  +  (10)

which is a linear version of the model that we have considered throughout the paper.

The vector  now includes a constant, age and sex.

In Table 7, we report estimates of  from this linear model. The estimates

from the linear model are smaller than those from the non-linear model for six of

the nine measures excluding the SRHS variables. For example, we obtain a sibling

correlation of 0.277 for asthma from model (10) and an estimate of 0.486 from model

(1). Similarly, for diabetes, we obtain 0.209 from the linear model and 0.628 from the

9See Mazumder (2008), Björklund, Lindahl, and Lindquist (2010), Mazumder (2011) and Schnit-

zlein (2014).
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latent variable model. Of these nine measures, the only REML estimates that are

larger are for anemia, allergies and limitations on school attendance. On the other

hand, the estimates for SRHS are larger in the linear model than in the latent variable

model. On the whole, it appears as if the estimates from the latent variable model in

Table 5 are less variable in that they tend to hover between 0.5 and 0.6, whereas the

REML estimates in Table 7 range from 0.165 to 0.930. It is also noteworthy that the

classical confidence intervals in Table 7 which are based on a Normal approximation

of the finite sample distribution often contain unity which is a pathology that is not

present with Bayesian confidence intervals. In summary, our Bayesian estimates

paint a much tighter and more accurate picture of the intergenerational transmission

of health status.10

7 Conclusion

In this paper, we investigate the role of family background and community influences

in explaining health disparities which is a topic that has received scant attention in

the literature. Using the CDS of the PSID, we estimate sibling correlations across

a battery of health outcomes that are on the order of 0.5 to 0.6. If we consider the

10The estimates in Table 7 tend to be higher than those in Mazumder (2011) who uses the same

data. The reason for this is that, for many of the variables, Mazumder (2011) uses a variable for

having "ever had" the condition that eliminates the time dimension of these variables.
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principal component across all of the measurements, which can be viewed as akin

to the G-factor for intelligence, we obtain a correlation of 0.449. These findings

suggest that around 50% of the variation in children’s health can be attributed to

family or community influences which is larger than previous estimates of sibling

correlations in health from Mazumder (2011) and more in line with the estimated

sibling correlation in adult wages in the US found byMazumder (2008). Importantly,

as argued by Bjorklund and Jantti (2012), the sibling correlation should be viewed as

a lower bound of the importance of family background as there are many important

family characteristics that are not shared by siblings. This suggests that policies that

can reduce disparities in resources between families and communities can potentially

reduce inequality in childhood health today as well as future disparities in adult

health.

There is also a growing literature that shows that improved health early in life

can have lasting effects on economic outcomes later in life e.g. Almond and Currie

(2011). This suggests that efforts to reduce childhood health disparities may also

reduce inequality in the future thereby attenuating the transmission of economic

status across generations.

Future research may wish to better understand the precise mechanisms that un-

derpin the sizable sibling correlations in health. For example, how important are
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neighborhood influences such as peers and schools compared to family characteristics

such as income and parental education. A better understanding of the sources of the

sizable sibling correlation in health can provide useful information to guide policy

makers in their efforts to reduce health disparities in the population.
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Table 1: Health Outcomes
Mean

(SD)

Asthma
0139

(0346)

Diabetes
0004

(0059)

Anemia
0052

(0223)

Development Delay
0052

(0223)

Hyperactivity
0064

(0225)

Allergies
0161

(0368)

Limitations on Athletics
0042

(0200)

Limitations on School Attendance
0018

(0132)

Limitations on School Work
0032

(0176)

Self-Reported Health Status∗
1675

(0813)
∗Denotes 5-point categorical variable. All others are binary.
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Table 2: Exogenous Covariates
Mean

(SD)

Age - 1st Year Present
6178

(3632)

Age - 2nd Year Present
11125

(3696)

Age - 3rd Year Present
13486

(2198)
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Table 3: Sample Sizes by Measurement
Health Measure 1st Year Present 2nd Year Present 3rd Year Present

Asthma 3235 2783 1344

Diabetes 3235 2784 1345

Anemia 3235 2785 1344

Development Delay 2325 2785 1344

Hyperactivity 3235 2782 1339

Allergies 3235 2789 1345

Limitations on Athletics 3235 2785 1345

Limitations on School Att. 3235 2784 1339

Limitations on School Work 3235 2784 1333

SRHS 3235 2780 1337
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Table 4: Autogression Coefficients for Variance Components and Sibling Correlations
Omega Sigma Rho

Asthma
0908

(0003)

0933

(0002)

0824

(0004)

Diabetes
0985

(0001)

0989

(0001)

0980

(0002)

Anemia
0979

(0002)

0971

(0002)

0969

(0002)

Development Delay
0930

(0002)

0951

(0002)

0875

(0003)

Hyperactivity
0957

(0002)

0938

(0002)

0914

(0003)

Allergies
0946

(0003)

0929

(0002)

0918

(0003)

Limitations on Athletics
0941

(0002)

0949

(0002)

0901

(0003)

Limitations on School Att.
0970

(0002)

0982

(0001)

0948

(0002)

Limitations on School Work
0944

(0002)

0950

(0002)

0908

(0003)

SRHS = very good
0936

(0002)

0885

(0003)

0907

(0003)

SRHS = good
0950

(0002)

0964

(0002)

0910

(0003)

SRHS = fair
0986

(0001)

0990

(0001)

0978

(0001)

Note: For a given sampled parameter, , this table reports an OLS

estimate of 1 from the regression  = 0 + 1−1 +  with its

Newey-West standard error in parentheses from the final 19,000 iterations.
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Table 5: Sibling Correlations: Core Results
Outcome Mean Median Std Dev

Asthma 0.486 0.486 0.031

Diabetes 0.628 0.630 0.085

Anemia 0.750 0.750 0.056

Development Delay 0.504 0.504 0.037

Hyperactivity 0.634 0.634 0.042

Allergies 0.569 0.568 0.045

Limitations on Athletics 0.532 0.532 0.042

Limitations on School Att. 0.633 0.630 0.054

Limitations on School Work 0.570 0.570 0.043

SRHS = very good 0.628 0.628 0.040

SRHS = good 0.614 0.613 0.042

SRHS = fair 0.623 0.623 0.083

1 0.449 0.448 0.016

2 0.450 0.450 0.011

3 0.466 0.466 0.007

4 0.480 0.481 0.005

5 0.490 0.490 0.004

6 0.500 0.500 0.002

Note: We ran the sampler for 20,000 iterations but report results

for the last 19,000 iterations.
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Table 6: Sibling Correlations: Core Results by Gender
Boys Girls

Outcome Mean Median Std Dev Mean Median Std Dev

Asthma 0.535 0.534 0.060 0.422 0.421 0.053

Diabetes 0.500 0.488 0.162 0.640 0.652 0.149

Anemia 0.716 0.730 0.114 0.756 0.765 0.096

Development Delay 0.717 0.720 0.073 0.528 0.525 0.084

Hyperactivity 0.730 0.733 0.077 0.576 0.572 0.087

Allergies 0.694 0.695 0.082 0.547 0.545 0.073

Limitations on Athletics 0.633 0.630 0.085 0.557 0.553 0.081

Limitations on School Att. 0.616 0.612 0.095 0.660 0.659 0.102

Limitations on School Work 0.630 0.628 0.082 0.665 0.667 0.084

SRHS = very good 0.662 0.664 0.072 0.678 0.679 0.069

SRHS = good 0.771 0.778 0.094 0.681 0.684 0.069

SRHS = fair 0.821 0.843 0.113 0.645 0.657 0.173

1 0.473 0.471 0.032 0.500 0.500 0.030

2 0.449 0.448 0.016 0.472 0.471 0.017

3 0.469 0.469 0.009 0.486 0.486 0.010

4 0.485 0.485 0.006 0.497 0.497 0.006

5 0.494 0.494 0.004 0.501 0.501 0.003

6 0.499 0.499 0.002 0.501 0.501 0.002

Note: We ran the sampler for 20,000 iterations but report results

for the last 19,000 iterations.
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Table 7: Sibling Correlations: REML Estimates

Outcome
Estimate

(Std Err)
95% Confidence Interval

Asthma
0277

(0040)
[0199 0354]

Diabetes
0209

(0072)
[0068 0351]

Anemia
0926

(0111)
[0708 1143]

Development Delay
0308

(0058)
[0194 0421]

Hyperactivity
0314

(0048)
[0220 0408]

Allergies
0725

(0083)
[0562 0889]

Limitations on Athletics
0430

(0075)
[0283 0576]

Limitations on School Att.
0827

(0240)
[0358 1300]

Limitations on School Work
0165

(0076)
[0016 0315]

SRHS = very good
0916

(0060)
[0798 1034]

SRHS = good
0930

(0069)
[0794 1066]

SRHS = fair
0926

(0012)
[0903 0949]

Note: Estimates of  from model (10).
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Figure 1: CUMSUM Statistics
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Figure 2: Time Series for Family and Individual Variances
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Figure 3: Sibling Correlation Distributions
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Figure 4: Sibling Correlation Distributions - Boys and Girls
Boys Girls
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