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Abstract

We analyze the forecasting performance of small mixed frequency factor models
when the observed variables share stochastic trends. The indicators are observed at
various frequencies and are tied together by cointegration so that valuable high fre-
quency information is passed to low frequency series through the common factors.
Differencing the data breaks the cointegrating link among the series and some of the
signal leaks out to the idiosyncratic components, which do not contribute to the trans-
fer of information among indicators. We find that allowing for common trends improves
forecasting performance over a stationary factor model based on differenced data. The
“common-trends factor model” outperforms the stationary factor model at all analyzed
forecast horizons. Our results demonstrate that when mixed frequency variables are
cointegrated, modeling common stochastic trends improves forecasts.
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1 Introduction

Empirical research generally avoids the direct use of mixed frequency data by first aggre-

gating higher frequency series and then performing estimation and testing at the lowest

frequency. As a result, information available in the high frequency dataset is not fully ex-

ploited. For example, at the end of the sample, when low frequency data has not yet been

released, the most recent observations of the high frequency series are discarded. This end-

of-sample information loss may be crucial when the task is to estimate current economic

conditions or forecast current-quarter indicators (nowcasts).1

One potential solution to this problem is to use both high and low frequency data in the

estimated model. In recent years there has been a growing interest in estimating macroe-

conomic coincident indices based on samples of mixed frequency indicators. Several studies

rely on the probability model described by Stock and Watson (1991) to extract an unob-

served common factor from a vector of stationary macroeconomic variables (see for example

Mariano and Murasawa (2003) and Aruoba et al. (2009)). While the common factor may be

a useful measure of the unobserved business cycle, the model can also be used for estimating

the unobserved value of low frequency indicators at the end of the sample and beyond.

Several studies have shown improved forecasting performance using mixed frequency fac-

tor models. For example, Camacho and Perez-Quiros (2010) show that forecasts from a

one-factor model of GDP growth dominate a group of institutional forecasts on a mean

squared error basis, and Nunes (2005) reports an improvement in nowcasting performance

of a mixed frequency model over a low frequency AR(1) model of GDP growth. Hyung

and Granger (2008) find that GDP growth rate forecasts from their Linked-ARMA mixed-

frequency model are more accurate than quarterly forecasts from a low-frequency model.

Similarly, the GDP growth nowcasts of Evans (2005) show an improvement over advanced

1Friedman (1962) and Chow and Lin (1971) proposed an alternative approach where lower frequency
series are disaggregated to higher frequency ones. Additional treatment of low frequency series with missing
observations is provided by Dempster et al. (1977), Palm and Nijman (1984) and Little and Rubin (1987).
A benefit of the mixed frequency factor models referenced throughout this paper is that they implicitly
generate interpolated values of the low frequency series.
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or preliminary GDP releases or the median Money Market Services forecast. All of the

studies mentioned above estimate one-factor models using stationary monthly or quarterly

macroeconomic indicators; any non-stationary levels are converted to growth rates. A po-

tential drawback of this approach is that trends are eliminated from all input series. Yet, if

the trends are shared among the indicators, modeling them as common components could

improve forecasts.

Some studies extract unobserved components from mixed frequency data in levels. For

example, Proietti and Moauro (2006) decompose a vector of time series in levels into a

single common trend and non-stationary idiosyncratic components. Koopman and Lucas

(2005) and Azevedo et al. (2006) decompose a vector of time series into common cycles

and individual trend components. Rather than first differencing to remove trends, they

model idiosyncratic trends and focus on extracting and analyzing business cycle indicators.

Non-stationarity in the idiosyncratic components implies that individual indicator levels are

allowed to diverge from each other. However, if the indicators are cointegrated, then captur-

ing non-stationarity in the form of common trends will facilitate the transfer of information

from high frequency indicators to low frequency ones, which in turn will benefit nowcasting

and forecasting performance. Although not using a common factor structure, Seong et al.

(2012) obtain improved forecasting performance from a mixed frequency error correction

model compared to a single-frequency model.

A related literature makes use of the mixed data sampling (MIDAS) regression models

first developed by Ghysels et al. (2004) and Ghysels et al. (2007). Clements and Galvão (2008,

2009) study the forecasting performance of MIDAS regression models, and Bai et al. (2013)

examine the relationship between MIDAS and the Kalman filter used in mixed-frequency

dynamic factor models. The latter study finds that the two methods, when applied to

stationary series, produce similar forecasts. Götz et al. (2012) allow for unit roots in the

data, and analyze the forecasting performance of a MIDAS based error correction model.

In line with research on single-frequency models, they find that ignoring cointegration and
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estimating a misspecified differenced model significantly deteriorates forecast accuracy.

In contrast to studies that extract business cycle components from a set of indicators, the

focus of this paper is on the forecasting performance of small mixed-frequency dynamic factor

models. We extend the existing literature by modeling the indicators in levels and allowing

for multiple common factors to capture any cointegrating relationship among the indicators.

In general, we expect the observed time series to follow common stochastic trends, the

number of which determines the number of factors in the model. We compare the forecasting

performance of the common-trends factor model in levels with the stationary factor model

in differences, typically used in the literature, and illustrate the misspecification of the latter

when applied to a data set containing common stochastic trends. Using both, simulated

and observed data, we find that the common-trends factor model (CTFM) outperforms

the stationary factor model (SFM) at all analyzed horizons. Our results demonstrate that

when the indicators are integrated and cointegrated, modeling common stochastic trends, as

opposed to eliminating them, will improve forecasts. In addition, we show that including high

frequency data in mixed frequency models improves their forecasting performance compared

to models with only low frequency aggregates.

The remainder of the paper is organized as follows. In Section 2 we give the general

formulation and describe the estimation of strict dynamic multi-factor models with mixed

frequency samples containing stochastic trends. In Section 3 we discuss the misspecification

of the stationary factor model when the indicators contain common trends. In Section 4

we illustrate the improvement in forecasting performance of the CTFM over the SFM in a

Monte Carlo setting. In the empirical application of Section 5, we contrast the forecasting

performance of the common-trends factor model with the stationary factor model and a

naive random walk model using macroeconomic data. Section 6 concludes.

3



2 Methodology

Below we give the general formulation and describe the estimation of a strict dynamic multi-

factor model with mixed frequency samples. We pay special attention to non-stationary data

and the handling of common stochastic trends.

2.1 Mixed Frequency Dynamic Multi Factor Model

Our analysis is based on the assumption that economic indicators can be modeled as linear

combinations of two types of unobserved orthogonal processes. The first one is an s × 1

vector of common factors, ft, that captures the co-movements of indicators. The second is

an n × 1 vector of idiosyncratic components, εt, that is driven by indicator specific shocks.

In contrast to Stock and Watson (1991) and the mixed frequency implementations of their

framework, we do not restrict our analysis to a single common factor. Instead, as in Macho

et al. (1987), we choose the number of factors to match the number of common stochastic

trends, s, in our dataset.

The underlying data generating process is assumed to evolve at a high frequency. In

empirical applications the base frequency is typically set to the highest available sampling

frequency. Correspondingly, the n×1 vector of observed indicators, yt, is subject to missing

values at the base frequency. Indicators sampled at lower frequencies are assumed to be

period aggregates of their latent base frequency counterparts. Let ẙt denote an n× 1 vector

capturing the evolution of the indicators at the base frequency. For example, if yt contains

one monthly indicator and one quarterly indicator, then ẙt contains the observed values of

the monthly indicator and latent monthly values of the quarterly indicator. The ẙt vector can

be modelled as a linear combination of the two mutually uncorrelated unobserved stochastic

components ft and εt

ẙt = Λ̊fft + Λ̊εεt , (1)

where Λ̊f is an n× s matrix of factor loadings and Λ̊ε is a diagonal n× n matrix containing
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the loading parameters of idiosyncratic shocks.

In the case of non-trending data, the kth factor fk,t, is assumed to follow an AR(p) process

at the base frequency

φk(L)fk,t = ηk,t , φk(L) = 1 −
p∑
i=1

φk,iL
i , ηk,t ∼ N(0, σk) , k = 1 . . . s . (2)

If the data contains stochastic trends, the kth factor can be modeled as difference stationary

process

∆fk,t = µk + ζk,t , ρk(L)ζk,t = ηk,t , ρk(L) = 1 −
p∑
i=1

ρk,iL
i , ηk,t ∼ N(0, σk) . (3)

The s factors are assumed to be mutually uncorrelated. The idiosyncratic component asso-

ciated with each variable, εj,t, is assumed to follow an AR(m) process at the base frequency

γj(L)εj,t = ηj,t , γj(L) = 1 −
m∑
i=1

γj,iL
i , ηj,t ∼ N(0, σj) , j = 1 . . . n. (4)

By definition, the idiosyncratic shocks, ηj,t, are mutually uncorrelated across all n indicators.

To simplify notation, in the remainder of this section we will assume that the factors and

the idiosyncratic components follow first order AR(1) dynamics.

The problem is to estimate the parameters and the unobserved processes from the fluc-

tuations of the observed indicators, and then use the estimated model to produce forecasts.

Estimation requires that the latent high frequency variables in ẙt, or their components in ft

and εt, be aggregated to match the observed indicators in yt, which may include flows and

stocks. A flow type indicator can be modeled as the accumulated sum of the common fac-

tor and idiosyncratic component during the observation period. A stock type indicator can

either be modeled as a snapshot in time or as a period average of the latent high frequency

variables. To illustrate the accumulation process, let’s assume that indicators are sampled

at monthly and quarterly frequencies. To deal with both, stock and flow variables, one can
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aggregate the kth monthly common factor, fk,t, and the jth monthly idiosyncratic component

εj,t, into f̃k,t and ε̃j,t, respectively, according to

f̃k,t = ψtf̃k,t−1 + θfk,t , r = 1 . . . s , (5)

ε̃j,t = ψtε̃j,t−1 + θεj,t , j = 1 . . . n , (6)

where tilde (̃·) denotes the aggregated value of the unobserved component (see also Harvey,

1989, Section 6.3). The cumulator variable ψt, is defined as

ψt =

 0 if t is the first month of the quarter

1 otherwise
(7)

for flows and time averaged stocks, and ψt = 0 for snapshots of stocks. The scaling variable,

θ, takes on the values

θ =

 1 for flow type variables and for snapshots of stocks

1/3 for time averaged stock variables.
(8)

The model can be cast in state-space form, and we can take advantage of the Kalman

filter to estimate the unobserved components. In the state space representation of the model,

all unobserved components are collected in the state vector αt. For the case of one factor,

one monthly, and one quarterly indicator, the state vector takes the form

αt = (ft, f̃t, εM,t, εQ,t, ε̃Q,t)
′ , (9)

where ft, εM,t, εQ,t are the base frequency (monthly) values of the factor, and the idiosyncratic

components corresponding to the monthly and the quarterly variable, respectively, and tilde

(̃·) denotes the aggregated (quarterly) value of the unobserved components. The transition
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equation

αt = Ttαt−1 + ηt , ηt ∼ N(0,Σ) , αt ∼ N(a,P ) , t = 1 . . . T , (10)

describes the evolution of the state vector. The block diagonal and time varying transition

matrix Tt contains the coefficients specifying the dynamics and the temporal aggregation of

the state

Tt = diag(Φt, γM ,ΓQ,t) , (11)

where

Φt =

 φ 0

θφ ψt

 , k = 1 . . . s , ΓQ,t =

 γQ 0

θγQ ψt

 . (12)

In Φt and ΓQ,t the first row specifies the dynamics and the second row the accumulation of

the unobserved components. The block diagonal covariance matrix of transition shocks, Σ

takes the form

Σ = diag(Σf , σ
2
M ,ΣQ) , (13)

so that the factors and the idiosyncratic components are mutually uncorrelated. The aggre-

gation scheme implies that

Σf = σ2
f

 1 θ

θ θ2

 , ΣQ = σ2
Q

 1 θ

θ θ2

 . (14)

The measurement equation relates the observed indicators, yt, to the unobserved state vector

yt = Zαt , (15)

where Z is a sparse matrix containing the loading coefficients of the common and idiosyn-
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cratic components

Z =

[
Λf,2×2 ΛM,2×1 ΛQ,2×2

]
=

 λf,M 0 λM 0 0

0 λf,Q 0 0 λQ

 . (16)

In Λf and ΛQ the first column corresponds to the monthly frequency and the second to

the quarterly. Because each observed indicator is related to the unobserved components

accumulated to the indicator’s own frequency, each row of these sub-matrices contains at

most one parameter.

The model parameters are estimated by maximum likelihood using the Kalman filter’s

prediction error decomposition (see Harvey, 1989, p. 125). At the end of the sample, the

Kalman filter can be used to produce out-of-sample predictions of the state variables. Fore-

casts of the indicators are then obtained by plugging the predicted state into the measurement

equation. By iterating the Kalman filter from the end of the sample h periods forward, we

obtain the h-step-ahead forecasts of the variables entering the model.

2.2 Identification, Stocks and Flows

A multi-factor model is only identified up to a rotation of the factors. In a single-frequency

model, column k of the factor-loading matrix corresponds to the loading of factor k on the

observed indicators, and identification can be achieved by zeroing out the elements above the

diagonal of the loading matrix. In a multi-frequency model, a sub-matrix Λf,k corresponds to

the loading of the kth factor on the observed indicators, and identification requires restrictions

on the rows of Λf,k. Specifically, identification can be achieved by setting the i < k rows of

Λf,k to zero for k = 1 . . . s.

Equations (5)-(8) imply that at the end of the quarter, a given unobserved component

accumulated as a flow is 3 times larger than the same component accumulated as a time

averaged stock. In multi-frequency factor models, the scale of the aggregated unobserved

components can be controlled by multiplying the corresponding columns of the Zt matrix by
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an arbitrary δ, and multiplying the corresponding row of the state equation by 1/δ. Because

the loading parameters in the Zt matrix implicitly cancel out the effects of θ = 1/3 = 1/δ, the

distinction between summation and averaging of the unobserved components is unidentified.

Thus, it is the researcher’s choice to accumulate the unobserved components as flows or time

averaged stocks.

2.3 Levels vs. Differences

Economic time series are often characterized as unit root processes, and this gives rise to

different approaches to specification and estimation of mixed-frequency factor models. The

choice is to either explicitly model any long-run equilibrium relationships that exist among

the indicators, or remove any non-stationarity from each indicator by differencing them before

modeling.2 In the first approach, the number of common factors is objectively determined

by the number of common stochastic trends, s, in the n observed series, and can be deduced

from the n− s cointegrating relationships in the system. The cointegrating vectors are the

rows of a matrix A(n−s)×n which has the property AΛ̊f = 0, so that premultiplying (1) with

A gives

Aẙt = AΛ̊εεt , (17)

an (n − s) × 1 stationary process. In contrast, when the stochastic trends are removed

by differencing the series, the existing literature on mixed-frequency strict factor models

generally restricts the number of common factors to a single measure of the latent business

cycle.

Conversion to differences eliminates the need to estimate multiple factors and focuses

attention on a single index of current business conditions. However, mixed-frequency sta-

tionary one-factor models are also frequently used for forecasting3, and modeling differences

when the indicators in levels contain common stochastic trends may leave the model mis-

2A third approach, followed by Koopman and Lucas (2005) and Azevedo et al. (2006), allows indicator
specific trends to filter out the low frequency components of each indicator.

3Predicted levels of the indicators are derived by reversing the differencing transformation.
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specified (see Section 3) and lead to poor forecasts. The conversion to differences discards

the relationship between the level variables, and may amplify the noise relative to the signal

in the series: high frequency indicators usually contain a large amount of noise, and differ-

encing them further weakens their signal to noise ratio. If stationary linear combinations of

the non-stationary indicators exist, that is, they are cointegrated, it may be optimal even

for short horizon forecasting to keep the indicators in levels and let the factors capture the

common stochastic trends (Christoffersen and Diebold, 1998).

3 Misspecification of SFM for Data with Common Trends

Below we illustrate the misspecification of stationary factor models if the indicators contain

common stochastic trends. To keep the analysis as simple as possible, our data generating

process contains only first order dynamics and we begin by restricting our attention to the

base frequency. Specifically, assume that the true data generating process (DGP) is given

by the common-trends factor model (CTFM) at the base frequency,

ẙt = Λ̊fft + Λ̊εεt,

where ft = ft−1 + ζt,

with ζt = Tζζt−1 + ηζ,t, ηζ,t ∼ N(0,Σζ) (18)

and εt = Tεεt−1 + ηε,t, ηε,t ∼ N(0,Σε) .

Transforming the DGP by first differencing gives us

∆ẙt = Λ̊f∆ft + Λ̊ε∆εt

with ∆ft = ζt = Tζζt−1 + ηζ,t, (19)

and ∆εt = Tε∆εt−1 + ∆ηε,t .
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Note, the implied model in equation (19) is different from the stationary one-factor model

commonly used in the literature,

∆ẙt = Λ∗ff
∗
t + Λ∗εε

∗
t

with f ∗t = T ∗f f
∗
t−1 + η∗f,t (20)

and ε∗t = T ∗ε ε
∗
t−1 + η∗ε,t .

The stationary model in (19) requires the same number of factors as present in the DGP, and

an idiosyncratic component that follows an MA(1) process with a unit root. In contrast, the

SFM in equation (20) contains a single common factor regardless of the number of factors in

the DGP, and the idiosyncratic components are assumed to follow stationary iid processes.

The models in (19) and (20) would only be equivalent if both contained the same number of

common factors, and η∗ε,t = ηε,t − ηε,t−1 were imposed.

To explore the relationship between the SFM and the CTFM further, we integrate the

differences, ∆ẙt, in equation (20),

ẙt = ẙ1 +
t∑

τ=2

∆ẙτ

= ẙ1 + Λ∗f

t∑
τ=2

f ∗τ + Λ∗ε

t∑
τ=2

ε∗τ

= ẙ1 + Λ∗f f̆
∗
t + Λ∗ε ε̆

∗
t . (21)

where f̆ ∗t is a common stochastic trend and ε̆∗t is a vector of idiosyncratic stochastic trends.

This is in contrast with the CTFM (DGP), where the idiosyncratic components are assumed

to be stationary. Note, the idiosyncratic components in (21) will be non-stationary even if

the number of factors in the SFM matches the number of common trends in the DGP unless

η∗ε,t = ∆ηε,t is imposed in (20) so that the autoregressive and the moving-average unit roots

cancel out in ε̆∗t . The presence of idiosyncratic stochastic trends, ε̆∗t , in (21) implies that the

level of the extracted factor, f̆ ∗t , will arbitrarily diverge from the level of the indicators. In
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contrast, cointegration ties the series together so that valuable high frequency information is

incorporated into low frequency predictions through the common factors. Differencing the

data breaks the cointegrating link among the indicators, and some of the signal leaks out to

the idiosyncratic components, which do not contribute to the transfer of information from

high frequency to low frequency series. Consequently, the forecasting performance of the

SFM will be affected by inefficient transfer of information.

An additional form of misspecification may occur with differenced indicators at the ag-

gregation stage.4 Let’s consider the multi-frequency model in which yQ,t, the low frequency

(quarterly) variable in yt is defined as the accumulated value of its latent high frequency

(monthly) counterpart in ẙt. Specifically, by aggregating the corresponding element of ẙt in

(18) to the quarterly observation frequency, we obtain

yQ,t =
1

3

3∑
δ=1

ẙQ,t−3+δ , (22)

where t falls on the last month of a quarter. Differencing at the quarterly frequency gives

∆3yQ,t = yQ,t − yQ,t−3 =
1

3

3∑
δ=1

∆3ẙQ,t−3+δ , (23)

where ∆3 denotes the change during a quarter. Note, the change of ẙQ,t during a quarter

can be written as the sum of monthly differences ∆3ẙQ,t =
∑3

ι=1 ∆ẙQ,t−3+ι, so that

∆3yQ,t = yQ,t − yQ,t−3 =
1

3

3∑
δ=1

3∑
ι=1

∆ẙQ,t−6+δ+ι . (24)

This expression can be simplified by expanding the double summation into

∆3yQ,t =
1

3
(∆ẙQ,t−4 + 2∆ẙQ,t−3 + 3∆ẙQ,t−2 + 2∆ẙQ,t−1 + ∆ẙQ,t) , (25)

4See also Mariano and Murasawa (2003). For simplicity we assume that the indicators have not under-
gone a non-linear transformation. Issues related to the temporal aggregation of log-transformed data were
discussed by Proietti and Moauro (2006).
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but this aggregation becomes cumbersome to implement if the base frequency is daily and the

dataset contains quarterly observations. As an alternative, Evans (2005) and Aruoba et al.

(2009), who used a daily base frequency in their studies, applied the aggregation scheme (5)

to differenced data. This is equivalent to an approximation of the weighted average in (25)

by the simple average of a latent variable ∆ẏQ,t

∆3yQ,t =
1

3
(∆ẏQ,t−2 + ∆ẏQ,t−1 + ∆ẏQ,t) =

1

3

3∑
δ=1

∆ẏQ,t−3+δ , (26)

where ∆ẏQ,t is an element of ∆ẏt, which can be defined similarly to (20)

∆ẏt = L̇∗ḟ ∗t + Ġ∗ε̇∗t with ḟ ∗t = Ṫ ∗f ḟ
∗
t−1 + η̇∗f,t and ε̇∗t = Ṫ ∗ε ε̇

∗
t−1 + η̇∗ε,t . (27)

Note that while (25) spans two quarterly observation periods, (26) only spans one, and

therefore the approximation directly affects the dynamics of the model.

To summarize, when the DGP contains common stochastic trends, the SFM has mis-

specified dynamics both at the base frequency and the observation frequency, and introduces

idiosyncratic stochastic trends. These forms of misspecification will affect the decomposition

of the observed data into common and idiosyncratic components, lead to inefficient trans-

fer of information among the variables, and deteriorate the forecasting performance of the

model.

4 Simulations

In this section we investigate the relative forecasting performance of the CTFM and SFM

when the data generating process coincides with the CTFM. In addition, to illustrate the

benefit of high frequency data in these models, we include in our comparison the single-

frequency counterpart of the CTFM that uses temporally aggregated indicators. To keep

the exercise simple, we restrict our mixed frequency model to three indicators (two monthly
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and one quarterly), one or two stochastic common trends, and first order dynamics in the

idiosyncratic components. Each stochastic trend contains drift and autocorrelated errors.

The monthly variables are assumed to be released with a one-month lag, and the quarterly

variable with a three-month lag. Figure 1 illustrates the timing of data releases and forecast

horizons relative to the forecast date. The passage of time is indicated by a shift of the

forecast date, T , forward in time. The information set increases when there is a new release

of the monthly and quarterly indicators. In the notation for the quarterly forecasts, Qi,T+j,

i indicates the quarter for which the forecast is being made, and j indicates the forecast

horizon in months. Note, at any given forecast date, only a subset of forecast horizons falls

on an end-of-quarter month.

Having specified the data generating process, we simulate a 21-year long sample of

monthly and quarterly observations from a given random seed. We reserve the first 20 years

of the sample for estimation of the CTFM and SFM models, and then produce forecasts for

horizons ranging from −2 months to +10 months, from which only every third one coincides

with end-of-quarter months. To obtain forecasts for the horizons that did not fall on an

end-of-quarter month, we repeat the forecasting exercise recursively (extend the size of the

sample by one month, repeat estimation and forecasting) two more times. Once we obtained

a quarterly forecast for each horizon between −2 months to +10 months, we compare the

predictions to the corresponding values in the remainder of the simulated sample.

We repeat the forecasting exercise using the CTFM and SFM described above for 1000

different seeds and 6 different parameterizations listed in Table 1. In these scenarios the

loading parameters across the common stochastic trends always add up to 1, and the id-

iosyncratic components follow an autoregressive process with either low or high persistence,

denoted by subscript LP or HP , respectively. Scenario A represents a situation when two

common stochastic trends have similar loadings on all three variables. Scenario B illus-

trates the case when the two monthly variables do not share common stochastic trends.

Finally, Scenario C illustrates the case when all variables are affected by only a single com-
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Figure 1: Illustration of the expansion of the information set and the monthly forecast
horizons for the quarterly variable relative to the forecast date T . In Qi,T+j, i indicates the
quarter for which the forecast is being made, and j indicates the forecast horizon in months.
The figure captures the passage of time from the end of March (top panel) through the end
of June (bottom panel) in monthly increments.

mon stochastic trend. We compare the CTFM to SFMs with one and two factors under

scenarios A and B, but only to a one-factor SFM under scenario C. We also compare the

mixed frequency CTFM to its single-frequency counterpart: the quarterly common trends

factor model (QCTFM) uses indicators aggregated to the quarterly frequency. While the
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comparison of the CTFM with the SFM illustrates the effect of eliminating common trends

in mixed frequency models, the comparison of the CTFM with its quarterly counterpart

illustrates the benefit of harnessing high frequency data in the correctly specified common

trends factor model. For each parameterization and each forecast horizon, we evaluate the

improvement in forecasting performance of the CTFM relative to the SFM and QCTFM

by calculating the reduction in root mean squared forecast error (RMSE) across the 1000

different random seeds. The results, categorized by the various forms of the data generating

process and estimated models, are listed in Table 2.

Table 1: Data generating process parameters

Scenarios
Parameter ALP AHP BLP BHP CLP CHP
λ1
M1

0.6 0.6 1.0 1.0 1.0 1.0
λ1
M2

0.4 0.4 0.0 0.0 1.0 1.0
λ1
Q 0.5 0.5 0.5 0.5 1.0 1.0

λ2
M1

0.4 0.4 0.0 0.0 0.0 0.0
λ2
M2

0.6 0.6 1.0 1.0 0.0 0.0
λ2
Q 0.5 0.5 0.5 0.5 0.0 0.0

γ1 = γ2 = γ3 0.1 0.7 0.1 0.7 0.1 0.7
Note: In the analyzed scenarios only the displayed parameters vary. The remaining parameters

are held fixed at the following values: For each idiosyncratic component the loading parameter

is set to g1 = g2 = g3 = 1, and the standard deviation of each idiosyncratic shock is set to

σ1 = σ2 = σ3 = 0.02. The two stochastic trends are drifting with speed µ1 = 0.015 and µ2 = 0.005,

respectively, and have autocorrelated errors with persistence ρ1 = 0.85 and ρ2 = 0.75, and variance

σ1 = 0.01 and σ2 = 0.005, respectively.

As shown in Section 3, when the DGP contains common stochastic trends the SFM is

misspecified whether it uses the correct number of factors or not: it introduces spurious

idiosyncratic stochastic trends and suffers from misspecified dynamics. Therefore it is not

surprising that the CTFM outperforms the SFM for all considered parameterizations and

at all analyzed horizons. The different combinations of factor loadings do not seem to have

large effects on the results. However, a reduction in idiosyncratic dynamics (LP ) results

in greater improvements in relative backcasting and nowcasting performance of the CTFM.

For short forecast horizons the CTFM outperforms the SFM by 20% to 35%, depending on
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Table 2: % Reduction in RMSE: CTFM Compared to SFM and QCTFM

Scenarios

Horizon A1
LP A2

LP AQLP B1
LP B2

LP BQ
LP C1

LP CQ1
LP

T -2 -33% -32% -40% -30% -32% -39% -31% -36%
T -1 -32% -32% -37% -29% -32% -37% -31% -36%
T -27% -28% -29% -23% -27% -29% -29% -32%
T+1 -37% -35% -52% -31% -36% -52% -34% -58%
T+2 -30% -31% -42% -26% -31% -43% -29% -49%
T+3 -21% -26% -28% -16% -25% -30% -23% -36%
T+4 -23% -25% -41% -16% -26% -42% -19% -48%
T+5 -18% -23% -32% -13% -23% -33% -16% -38%
T+6 -10% -20% -20% -6% -20% -20% -12% -25%
T+7 -14% -22% -31% -8% -22% -32% -12% -37%
T+8 -11% -21% -24% -7% -21% -25% -11% -29%
T+9 -6% -21% -15% -3% -20% -15% -9% -20%
T+10 -10% -23% -25% -5% -23% -25% -10% -29%

Horizon A1
HP A2

HP AQHP B1
HP B2

HP BQ
HP C1

HP CQ
HP

T -2 -17% -17% -20% -13% -14% -19% -16% -17%
T -1 -17% -17% -18% -13% -14% -18% -15% -16%
T -14% -16% -13% -10% -12% -13% -16% -15%
T+1 -25% -28% -33% -20% -24% -33% -26% -38%
T+2 -21% -27% -27% -18% -23% -28% -23% -33%
T+3 -16% -25% -18% -13% -20% -20% -22% -26%
T+4 -20% -29% -31% -15% -24% -32% -22% -40%
T+5 -16% -28% -23% -13% -23% -25% -20% -32%
T+6 -10% -25% -15% -7% -20% -16% -16% -23%
T+7 -13% -30% -26% -9% -24% -26% -16% -34%
T+8 -10% -29% -19% -8% -24% -21% -14% -27%
T+9 -6% -27% -12% -4% -22% -13% -13% -19%
T+10 -9% -32% -21% -6% -27% -22% -13% -28%
Note: The superscripts 1, 2, and Q in the scenario designations indicate comparison of the CTFM

to the SFM with 1 and 2 factors, and the QCTFM, respectively. The table shows the percentage

difference in RMSE for the CTFM forecasts relative to the forecasts produced by the SFM with 1

and 2 factors, and the QCTFM. The results are based on 1000 repetitions for each horizon. The

forecast horizon is measured in months relative to the forecast date, T . The Diebold and Mariano

(1995) test indicates that the improvements are significant at the 5% level for each scenario at all

horizons.

model specification.

The improvements of the CTFM over the one-factor SFM remain similar for one and two

factors in the DGP. And, while adding a second factor to the SFM has little effect on the short
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horizon results, it does cause a deterioration in long horizon forecast performance. These

findings suggest that additional factors in the SFM split the differenced indicators into more

unobserved components, but do not improve model specification. As our empirical results in

Section 5.1 illustrate, the first factor in the SFM captures most of the signal in the differenced

data set, and the second factor is heavily affected by noise. Consequently, the integrated

value of the second stationary factor has a limited effect at short horizons, but leads to a

deterioration in forecasting performance at longer horizons.
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Figure 2: Root mean squared forecast error by scenario, for all considered horizons for the
CTFM, SFM with one and two factors, and the QCTFM.

Figure 2 illustrates the root mean squared forecast error for the CTFM, SFM with one

and two factors, and the QCTFM for the considered forecast horizons. Because the QCTFM

does not benefit from any intra-quarter information, its RMSE remains constant within a

quarter but exhibits a decline for horizons that are full quarters (3, 6, 9 and 12 months)
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away from the release date of the quarterly series. In contrast the CTFM and SFM forecasts

do take advantage of the intra-quarter information and have therefore smoother evolution of

RMSE as the forecast horizon changes. The low level and smoothness of the CTFM RMSE

is an indication of its ability to transmit information in the high frequency indicators to the

quarterly forecasts.

5 Empirical Application

To illustrate the forecasting performance of the CTFM relative to the SFM, we make use

of monthly real personal income (RPI) and real personal consumption expenditures (PCE)

to forecast quarterly real gross domestic product (GDP). Table 3 summarizes the sampling

Table 3: Indicators
Sampling Freq. Reporting Lag

Real Personal Income, RPI monthly 1 month
Real Personal Consumption Expenditures, PCE monthly 1 month
Real Gross Domestic Product, GDP quarterly 3 months
Note: All series were obtained from the Federal Reserve Economic Database (FRED). The second

revision of real gross domestic product is released three months after a quarter ends. Note that

we do not construct a real-time data set as in Giannone et al. (2008); our data set reflects all the

revisions prior to January 25, 2013, the day we obtained the data.

frequencies and reporting lags of the indicators in our study. Although monthly real personal

consumption expenditures are only available after January 1995, the nominal value of the

series and the PCE chain type price index are available since 1959, and we use these two

series to calculate an extended history of PCE. Accordingly, we set the start of our dataset

to January 1959 (GDP is available from 1947). Because the variables exhibit exponential

growth, we apply a logarithmic transformation to the data.

Table 4 reports results from augmented Dickey-Fuller (1979) (ADF) tests for the null

hypothesis of a unit root in each of our indicators. We can not reject the null hypothesis of

a unit root for any of the series at the 10% significance level. To test for cointegration, we

apply Johansen’s (1988) rank test to a temporally aggregated quarterly system. While the
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Table 4: Augmented Dickey-Fuller tests
∆yt = α + βyt−1 +

∑m
k=1 θt∆yt−k + εt ; H0 : β = 0

1 + β̂ ADF t-test p-value
RPI 0.999 -2.169 0.218
PCE 0.999 -1.836 0.363
GDP 0.997 -2.304 0.171
Note: Column 1 lists the series tested for a unit root; column 2

presents the estimated AR(1) parameter; column 3 the the ADF t-

test for the null hypothesis β = 0; and column 4 presents the marginal

significance level for the ADF t-test. The lag-length, m is determined

by testing down from the maximum of 14 lags.

number of cointegrating vectors in the system is invariant to temporal aggregation, the finite

sample power of tests may fall as the number of observations declines (see Marcellino, 1999).

Therefore, we use the rank test to obtain initial estimates of the number of cointegrating

vectors and verify our findings through unit root tests on the residuals from our CTFM.

Results in Table 5 indicate that we can reject the null hypothesis of no cointegrating vectors,

Table 5: Cointegration rank tests

Rank Eigenvalue Trace test p-value λ-max test p-value
r = 0 0.110 37.815 0.004 24.860 0.012
r = 1 0.043 12.955 0.117 9.445 0.257
r = 2 0.016 3.511 0.061 3.511 0.061
Note: Column 1 lists the null hypothesis of zero, at least one, and at least two

cointegrating vectors; column 2 the eigenvalue; column 3 the trace test; column

4 the marginal significance level for the trace tests; column 5 the maximum

eigenvalue test; and column 6 the marginal significance level for the maximum

eigenvalue test. The test is evaluated with an unrestricted constant, and the

lag-length is determined by the Schwarz-Bayesian Information Criterion.

and we are unable to reject the hypothesis of at most one cointegrating vector at the 5%

significance level. We tentatively conclude that our three indicators contain two common

stochastic trends. We verify this result by estimating our model with one and two factors

containing a unit root, and find that the idiosyncratic errors become stationary once two

such factors are included in the model. In other words, a linear combination of two common

stochastic trends is able to explain the non-stationarity of the individual variables.
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We standardize all variables before estimation. Predicted values of the indicators are

obtained by reversing the standardization and log-transformation. To keep the model as

simple as possible, we follow Nunes (2005), Aruoba et al. (2009), and others by restricting the

unobserved components to at most first order dynamics. While these models may suffer from

misspecified dynamics, the dynamic structure won’t change as new data becomes available,

as it would if we allowed for variable lag lengths.

5.1 Estimation Results

Table 6 displays the estimation results for the CTFM with two stochastic trends using

the full data set, and Figure 3 displays the decomposition of the standardized log-levels

into the two common stochastic trends and the idiosyncratic components.5 From the two

factors, the first one has a slightly larger drift and variance of the errors (µ1, σ1). The

idiosyncratic components have approximately similar error variances, but their persistence

varies considerably. While the idiosyncratic component of GDP is persistent, it is stationary,

implying that the two factors have successfully captured the common stochastic trends in

the three variables.

Table 6: Estimation Results: Common-Trends Factor Model
λ1,RPI λ1,PCE λ1,GDP λ2,RPI λ2,PCE λ2,GDP

1.000 0.721∗ 0.781∗ 0.000 1.000 0.792∗

µ1 φ1 σ1 µ2 φ2 σ2

0.005∗ 0.703∗ 0.005∗ 0.001∗ 0.737∗ 0.002∗

γRPI γPCE γGDP σRPI σPCE σGDP
0.449∗ 0.258∗ 0.940∗ 0.008∗ 0.007∗ 0.009∗

Note: Maximum likelihood parameter estimates for CTFM containing

two common stochastic trends with drift (µ) and autocorrelated errors

(φ). ∗ denotes significance at the 5% level. To satisfy identification

requirements, λ2,RPI is fixed at 0, and λ1,RPI , λ2,PCE , and the loading

parameters of the idiosyncratic components are fixed at 1.

Table 7 displays the estimation results for the SFM with one and two factors using the

5We estimated the model by Ox 5.10 (Doornik, 2007) and SsfPack 2.2 (Koopman et al., 1999).
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Figure 3: Standardized log-levels of real personal income, real personal consumption expen-
ditures, and real gross domestic product, and their decomposition into common stochastic
trends and stationary idiosyncratic components.

full data set. When a second factor is considered, its autocorrelation, variance and loading

are all statistically insignificant. This implies that the contribution of the second factor to

the explanatory power of the model is limited, and the first factor captures most of the signal

in the data. The remaining parameter estimates are significant and fairly similar across the

one-factor and two-factor models. Figure 4 displays the decomposition of the standardized

differences into the idiosyncratic components and two common factors (except for the second

factor, there is no qualitative difference in the subplots when only one factor is considered).

The first factor seems to capture most of the cyclical information, whereas the second factor

and the idiosyncratic components absorb quickly decaying shocks.
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Table 7: Estimation Results: Stationary Factor Models

One-Factor Model
λ1,∆RPI λ1,∆PCE λ1,∆GDP

1.000 0.876∗ 2.046∗

φ1 σ1

0.795∗ 0.246∗

γ∆RPI γ∆PCE γ∆GDP σ∆RPI σ∆PCE σ∆GDP

-0.245∗ -0.401∗ -0.130∗ 0.895∗ 0.891∗ 1.204∗

Two-Factor Model
λ1,∆RPI λ1,∆PCE λ1,∆GDP λ2,∆RPI λ2,∆PCE λ2,∆GDP

1.000 0.883∗ 2.053∗ 0.000 1.000 0.519
φ1 σ1 φ2 σ2

0.766∗ 0.263∗ 0.000 0.050
γ∆RPI γ∆PCE γ∆GDP σ∆RPI σ∆PCE σ∆GDP

-0.199∗ -0.290∗ -0.114∗ 0.891∗ 0.886∗ 1.192∗

Note: Maximum likelihood parameter estimates for SFM. ∗ denotes sig-

nificance at the 5% level. To satisfy identification requirements, λ2,∆RPI

is fixed at 0, and λ1,∆RPI , λ2,∆PCE , and the loading parameters of the

idiosyncratic components are fixed at 1.
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Figure 4: Standardized log-differences of real personal income, real personal consumption
expenditures, and real gross domestic product, and their decomposition into two stationary
common factors and idiosyncratic components.
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5.2 Forecasting Results

The quality of forecasts depends in part on what information is available at the time the

forecast is made. Although we do not construct a real-time data set as in Giannone et al.

(2008), we do replicate the sequence of data releases for the three variables. The model

is estimated, and a forecast is made at the end of each month between January 1979 and

December 2012. At each forecast date, T , the latest available monthly observation is for the

previous month (with a time stamp of T −1). The quarterly indicator is only available three

months after the end of the quarter. Figure 1 in Section 4 gives an illustration of the timing

of data releases and forecast horizons relative to the forecast date T . As the forecast date

moves forward, the amount of available information increases, and for a given target date

the forecast horizon shrinks. We expect the flow of high frequency information before the

release of GDP to improve estimates of the GDP series.

Table 8 compares the accuracy of predictions from the CTFM to those from the SFMs

with one and two factors, and a quarterly factor model (QCTFM) with the monthly series

aggregated to the quarterly frequency. We report the root mean squared error (RMSE) of

forecasts, the percentage difference in RMSE across models, and the 5% marginal signifi-

cance of the Diebold and Mariano (1995) tests for forecast accuracy. The GDP predictions

produced by the mixed-frequency models show an improvement over the single-frequency

QCTFM forecasts: the RMSE reduction for the CTFM over the QCTFM model ranges

from 17% to 43%. The quarterly factor model of GDP does not benefit from the high fre-

quency information that becomes available within a quarter. Therefore the RMSE from this

model is constant between GDP release dates but exhibits a drop on GDP release dates.

The mixed frequency models are re-estimated for each expansion of the information set,

and the precision of these models for the forecast horizon T −2 is only influenced by updated

parameter values. The main benefit of mixed frequency models comes from the incorporation

of intra-quarter high frequency information into the end-of-quarter GDP estimates. As

Figure 1 in Section 4 illustrates, the GDP predictions for horizons T − 1 and higher are
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Table 8: GDP Forecasting Results: Comparison of CTFM, SSFM and RW Model

RMSE % Difference
Horizon CTFM 2SFM 1SFM QM CT/2S CT/1S CT/QM
T -2 48 54 54 68 -11%∗ -11%∗ -29%∗

T -1 48 56 57 68 -15%∗ -14%∗ -28%∗

T 51 57 58 68 -12%∗ -11%∗ -25%∗

T+1 72 83 83 126 -14%∗ -14%∗ -43%∗

T+2 79 94 94 126 -15%∗ -16%∗ -37%∗

T+3 89 98 98 126 -9%∗ -9%∗ -29%∗

T+4 111 125 124 182 -10%∗ -11%∗ -38%∗

T+5 126 142 141 182 -10%∗ -11%∗ -30%∗

T+6 141 149 148 182 -5%∗ -5%∗ -22%∗

T+7 158 172 170 233 -7%∗ -8%∗ -32%∗

T+8 174 190 189 233 -8%∗ -8%∗ -25%∗

T+9 192 199 197 233 -3% -3% -17%∗

T+10 206 220 218 280 -6%∗ -6%∗ -26%∗

Note: RMSE of GDP forecasts (units: US $ Billion), and percentage difference between the RMSE

of GDP forecasts. The forecast horizon is measured relative to the forecast date, T . The CTFM

is compared to SFMs with one and two factors, and to a quarterly two-factor model. Marginal

significance of the Diebold and Mariano (1995) test at the 5% level is indicated by ∗.

directly affected by the releases of the monthly series. The impact of this high frequency

information is then propagated to longer horizon forecasts.

As foreshadowed by the simulation results, the CTFM is more precise than the SFMs at all

horizons. Cointegration ties the series together so that valuable high frequency information

is passed to low frequency forecasts through the common factors. Therefore two common

stochastic trends predict the evolution of the indicators more effectively than one or two

stationary factors. The transformation in the SFM removes all long-run trend information

leaving the model with a set of relatively noisy variables to analyze. The first stationary

factor quite successfully captures common cyclical information, but that is not sufficient

to reconstruct all the comovement of the variables in levels. The insignificant loading of

the second stationary factor implies that it does not capture any meaningful amount of

information, and has a minimal effect on the forecast. Figure 5 illustrates that the integrated

idiosyncratic components in the SFM with two factors are much more persistent than the

idiosyncratic components in the CTFM in Figure 4. This occurs because differencing breaks
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the cointegrating link among the variables, and as a consequence the SFM is unable to fully

extract the common stochastic trends in the data. In the SFM some of the signal leaks out

to the idiosyncratic components, which do not contribute to the transfer of information from

high frequency indicators to low frequency ones. By making use of a linear combination

of the two common stochastic trends, the CTFM is better able to capture and transfer the

relevant high frequency information from the monthly variables to the quarterly one. Because

the CTFM incorporates the intra-period information more accurately than is possible in the

misspecified SFM, the forecasts based on the former model have a lower RMSE than forecasts

that are based on the latter.
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Figure 5: Integrated idiosyncratic components from the SFM with two factors.

6 Conclusion

We analyze the forecasting performance of small mixed frequency factor models when the

observed variables share stochastic trends. We allow for multiple common factors to cap-

ture potential cointegrating relationships among the levels of the observed variables. Our
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comparison of mixed and single-frequency models demonstrates that forecasts benefit from

incorporating high frequency information into the model. However, in the presence of com-

mon stochastic trends the mixed frequency stationary one-factor models that are frequently

used to extract coincident indicators are misspecified. The elimination of common stochas-

tic trends leads to inefficient information transfer from high frequency indicators to low

frequency ones. The forecasting performance of the stationary factor model suffers even if

the model contains the same number of common factors as the data generating process. The

common-trends factor model outperforms the stationary factor model at all forecast hori-

zons, and the gain in precision as measured by the root mean squared forecast error tends to

be the strongest for nowcasts and short horizon forecasts. Our results illustrate that when

the constituent indicators are cointegrated, modeling common stochastic trends improves

short horizon forecasts.
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