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Abstract

We extend the existing literature on small mixed frequency single factor models by
allowing for multiple factors, considering indicators in levels, and allowing for cointe-
gration among the indicators. We capture the cointegrating relationships among the
indicators by common factors modeled as stochastic trends. We show that the station-
ary single-factor model frequently used in the literature is misspecified if the data set
contains common stochastic trends. We find that taking advantage of common stochas-
tic trends improves forecasting performance over a stationary single-factor model. The
common-trends factor model outperforms the stationary single-factor model at all an-
alyzed forecast horizons on a root mean squared error basis. Our results suggest that
when the constituent indicators are integrated and cointegrated, modeling common
stochastic trends, as opposed to eliminating them, will improve forecasts.
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1 Introduction

Empirical research generally avoids the direct use of mixed frequency data by first aggre-

gating higher frequency series and then performing estimation and testing at the lowest

frequency. As a result, information available in the high frequency dataset is not fully ex-

ploited. For example, at the end of the sample, when low frequency data has not yet been

released, the most recent observations of the high frequency series are discarded. This end

of sample information loss may be crucial when the task is to estimate current economic

conditions or forecast current-quarter indicators (nowcasts).

One potential solution to this problem is to use both high and low frequency data in the

estimated model. In recent years there has been a growing interest in estimating macroe-

conomic coincident indices based on samples of mixed frequency indicators. Several studies

rely on the probability model described by Stock and Watson (1991) to extract a single

unobserved common factor from a vector of stationary macroeconomic variables (see for ex-

ample Mariano and Murasawa (2003) and Aruoba et al. (2009)). While the common factor

(coincident index) may be a useful measure of the unobserved business cycle, it can also be

used when estimating the unobserved value of low frequency indicators at the end of the

sample. Furthermore, forecasts of the coincident index can be used when forecasting other

indicators in the model.

Unfortunately, the forecasting performance of mixed frequency factor models is decidely

mixed. On the one hand, Camacho and Perez-Quiros (2010) show that forecasts from a single-

factor model of GDP growth dominate a group of institutional forecasts on a mean squared

error basis, and Nunes (2005) reports an improvement in nowcasting performance of a mixed

frequency model over a low frequency AR(1) model of GDP growth. On the other hand,

Hyung and Granger (2008) find that GDP growth rate forecasts from their Linked-ARMA

mixed-frequency model are less accurate than quarterly forecasts from a low-frequency model.

Similarly, the GDP growth nowcasts of Evans (2005) show no significant improvement over

advanced or preliminary GDP releases or the median Money Market Services forecast. All
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of the studies mentioned above estimate single-factor models using stationary monthly or

quarterly macroeconomic indicators; any non-stationary levels are converted to growth rates.

A potential drawback of this approach is that trends are eliminated from all input series.

Yet, if some of the trends are common, the estimated model is misspecified, and forecasting

performance may suffer.

We extend the existing literature on small mixed-frequency single-factor models by al-

lowing for multiple factors, considering indicators in levels, and allowing for cointegration

among the indicators. In general, we expect indicators to be driven by one or more common

stochastic trends, the number of which determines the number of factors in the model. Con-

sequently, rather than restrict our attention to the estimation of a single coincident index, we

focus on the model’s performance in nowcasting and forecasting the constituent indicators.

In the empirical section of the paper we compare forecasts from our common-trends factor

model in levels with forecasts from a single-factor model in differences. The short horizon

forecasts from both models are more precise than those from random walk models of individ-

ual indicators at their observation frequencies. However, the reduction in root mean squared

forecast error for the common-trends factor model (CTFM) can be significantly greater than

that for the stationary single-factor model (SSFM). Our results suggest that when the con-

stituent indicators are integrated and cointegrated, modeling common stochastic trends, as

opposed to eliminating them, will improve forecasts. Despite the potential benefits of model-

ing and forecasting cointegrated series using a common-trends mixed-frequency factor model,

to our knowledge this paper is the first attempt at such an exercise.

The remainder of the paper is organized as follows. In Section 2 we give the general

formulation and describe the estimation of strict dynamic multi-factor models with mixed

frequency samples containing stochastic trends. We pay special attention to the misspeci-

fication of the stationary single-factor model when the indicators contain common trends.

In the empirical application of Section 3, we contrast the forecasting performance of the

common trends factor model with the stationary single-factor model and a naive random
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walk model. Section 4 concludes.

2 Methodology

Below we give the general formulation and describe the estimation of a strict dynamic multi-

factor model with mixed frequency samples. We pay special attention to non-stationary data

and the handling of common stochastic trends.

2.1 Mixed Frequency Dynamic Multi Factor Model

Our analysis is based on the assumption that economic indicators can be modeled as linear

combinations of two types of unobserved orthogonal processes. The first one is a s×1 vector

of common factors, ft, that captures the co-movements of indicators. The second is a n× 1

vector of idiosyncratic components, �t, that is driven by indicator specific shocks. In contrast

to Stock and Watson (1991) and the mixed frequency implementations of their framework,

we do not restrict our analysis to a single common factor. Instead, as in Macho et al. (1987),

we choose the number of factors to match the number of common stochastic trends, s, in

our dataset.

The underlying data generating process is assumed to evolve at a high frequency; for

tractability we set the base frequency to daily. The n × 1 vector of observed indicators,

yt, is subject to missing values at the base frequency. The observed indicators are period

aggregates of an n × 1 vector of latent variables, ẙt, that can be expressed as a linear

combination of the two mutually uncorrelated unobserved stochastic components ft and �t

ẙt = L̊ft + G̊�t , (1)

where L̊ is an n× s matrix of factor loadings and G̊ is a diagonal n× n matrix containing

the loading parameters of idiosyncratic shocks.1 The problem is to estimate the parameters

1In a multi-frequency model the dimensions of the loading matrices will depend on the number of different
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and the unobserved processes from the fluctuations of the observed indicators, and then use

the estimated model to produce forecasts.

Because the model is linear, it can be cast in state-space form, and we can take advantage

of the Kalman filter to estimate the unobserved components. In general, the r
th factor f r

t ,

is assumed to follow an AR(p) process at the daily base frequency2

f
r
t = φ

r
1f

r
t−1 + φ

r
2f

r
t−2 + . . .+ φ

r
pf

r
t−p + e

r
t , e

r
t ∼ N(0, σr

f ) , r = 1 . . . s , (2)

The s factors are assumed to be mutually uncorrelated. The idiosyncratic component asso-

ciated with each variable, �j,t, is assumed to follow an AR(m) process at the base frequency

�j,t = γj,1�j,t−1 + γj,2�j,t−2 + . . .+ γj,m�j,t−m + ej,t , ej,t ∼ N(0, σ�,j) , j = 1 . . . n. (3)

By definition, the idiosyncratic shocks, ej,t, are mutually uncorrelated across all n indicators.

Indicators of economic performance are generally recorded at a lower frequency implying

missing data points at the base frequency. There are several ways to relate the latent high

frequency variables, ẙt, to the observed indicators, yt, which may include stock and flow

variables. If the indicators are recorded as levels, flow types can be modeled as period sums,

and stock types can be modeled either as snapshots in time or more commonly as period

averages. Specifically, when the observed indicator is a flow type variable, it can be related

to the accumulated value of the common factor and idiosyncratic component during the

observation period. When the observed indicator is a stock type variable, it can be related

to the average value of the common factor during the period. To deal with stock and flow

variables as well as their temporal aggregation, one can aggregate an unobserved daily factor,

frequencies of the indicators in yt. These dimensions will be made precise in (20), the measurement equation
of the state space model.

2Note that the AR(p) process allows for the possibility that factors may follow a random walk.
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f
r
t , and idiosyncratic component, ej,t, into f̃

r
i,t and �̃j,t, respectively, according to

f̃
r
i,t = ψi,tf̃

r
i,t−1 + θif

r
t , i = 1 . . . k , r = 1 . . . s , (4)

�̃j,t = ψj,t�̃j,t−1 + θj�j,t , j = 1 . . . n , (5)

where k is the number of frequencies in the model, ψt is a cumulator variable defined as

ψi,t , ψj,t =






0 if t is the first day of the period

1 otherwise,
(6)

and

θi =






1

1/di
, θj =






1 for flow type variables

1/dj for stock type variables,
(7)

where di and dj are the number of days per period for frequencies i and j respectively. We

follow Nunes (2005) and Aruoba et al. (2009) and apply a similar aggregation method for

indicators converted to growth rates. However, as we show in Section 2.2, in an unobserved

component model with multiple frequencies the distinction between stocks and flows is not

identified, and therefore we follow the stock type convention for all variables.

In the state space representation of the model, all unobserved components are collected

in the state vector αt. Its first lag

αt−1 = (f 1
t−1 . . . f

1
t−p, f̃

1
1,t−1 . . . f̃

1
k,t−1, . . . , f

s
t−1 . . . f

s
t−p, f̃

s
1,t−1 . . . f̃

s
k,t−1,

�1,t−1 . . . �1,t−m, �̃1,t−1, . . . , �n,t−1 . . . �n,t−m, �̃n,t−1)�.
(8)

contains p lags of the s factors, the factors aggregated to k frequencies, m lags of the n

idiosyncratic shocks, and the value of each shock aggregated to the observation frequency of

the corresponding indicator. The transition equation

αt = Ttαt−1 + ηt , ηt ∼ N(0,Q) , αt ∼ N(a,P ) , t = 1 . . . T , (9)
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describes the evolution of the state vector. The block diagonal and time varying transition

matrix Tt contains the coefficients specifying the dynamics of the state

Tt =





K
1
t · · · 0(p+k)×(p+k) 0(p+k)×(m+1) · · · 0(p+k)×(m+1)

...
. . .

...
...

. . .
...

0(p+k)×(p+k) · · · K
s
t 0(p+k)×(m+1) · · · 0(p+k)×(m+1)

0(m+1)×(p+k) · · · 0(m+1)×(p+k) M1,t · · · 0(m+1)×(m+1)

...
. . .

...
...

. . .
...

0(m+1)×(p+k) · · · 0(m+1)×(p+k) 0(m+1)×(m+1) · · · Mn,t





, (10)

where

Mj,t =





γj,1 . . . γj,m−1 γj,m 0

I(m−1) 0(m−1)×1 0(m−1)×1

θjγj,1 . . . θjγj,m−1 θγj,m ψj,t




, j = 1 . . . n , (11)

specifies the dynamics (rows 1 through m) and accumulation (last row) of the idiosyncratic

component, and

K
r
t =





φ
r
1 . . .φ

r
p−1 φ

r
p 01×k

I(p−1) 0(p−1)×1 0(p−1)×k

ΘΦr
1 . . .ΘΦr

p−1 ΘΦr
p Ψt




, r = 1 . . . s , (12)

specifies the dynamics (rows 1 through p), and accumulation (last k rows) of the factors with

Θ = diag(θ1 . . . θk) (13)

Φh = φh1k×1 , h = 1 . . . p (14)

Ψt = diag(ψ1,t . . .ψk,t) . (15)
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The block diagonal covariance matrix of transition shocks, Q takes the form

Q =





H
1
f · · · 0(p+k)×(p+k) 0(p+k)×(m+1) · · · 0(p+k)×(m+1)

...
. . .

...
...

. . .
...

0(p+k)×(p+k) · · · H
s
f 0(p+k)×(m+1) · · · 0(p+k)×(m+1)

0(m+1)×(p+k) · · · 0(m+1)×(p+k) H�,1 · · · 0(m+1)×(m+1)

...
. . .

...
...

. . .
...

0(m+1)×(p+k) · · · 0(m+1)×(p+k) 0(m+1)×(m+1) · · · H�,n





, (16)

so that the factors and the idiosyncratic components are mutually uncorrelated. The aggre-

gation scheme implies

H�,j = σ
2
�,j





1 01×(m−1) θj

0(m−1)×1 0(m−1)×(m−1) 0(m−1)×1

θj 01×(m−1) θ
2
j




, j = 1 . . . n . (17)

and

H
r
f = (σr

f )
2





1 01×(p−1) (θ1 . . . θk)

0(p−1)×1 0(p−1)×(p−1) 0(p−1)×k

(θ1 . . . θk)� 0k×(p−1) (θ1 . . . θk)�(θ1 . . . θk)




, r = 1 . . . s , (18)

The measurement equation relates the observed variables, yt, to the unobserved state vector

yt = Zαt , (19)

where Z is a sparse matrix containing the loading coefficients of the common and idiosyn-

cratic components

Z =

�
L

1
n×(p+k) . . . L

s
n×(p+k) Gn×n(m+1)

�
. (20)
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Because each variable is related to the factors accumulated to the variable’s own frequency,

each row of Lr; r = 1 . . . s contains only one parameter: the (j, p+i) element of Lr represents

the loading of the r
th factor accumulated to the i

th frequency onto the j
th observed indica-

tor. The (j, j(m + 1)) element of the matrix G contains the coefficient of the idiosyncratic

component corresponding to indicator yj,t, and the rest of G contains zeros.

2.2 Identification, Stocks and Flows

A multi-factor model is only identified up to a rotation of the factors. In a single-frequency

multi-factor model, column r of the loading matrix corresponds to the loading of factor r

on the observed variables, and identification is usually achieved by zeroing out the elements

above the diagonal of the loading matrix and fixing the covariance matrix of the state shocks

(see for example Bai and Ng (2010)). In a multi-frequency multi-factor model, a submatrix

L
r corresponds to the loading of factor r on the observed variables, and identification requires

restrictions on the rows of the Lr matrices and on the variance of the unobserved components.

Specifically, identification can be achieved by setting the rows j < r of Lr to zero, and setting

σ
r
f = 1 and σ�,j = 1 for r = 1 . . . s, j = 1 . . . n.

In multi-frequency factor models, the scale of the aggregated unobserved components can

be controlled by multiplying the corresponding row of the state equation by δ and multiplying

the corresponding columns of the Zt matrix by 1/δ. Equation (7) implies that at the end of

the period, a given variable accumulated as a flow is d times larger than the same variable

accumulated as a stock. Because the loading parameters in the Zt matrix implicitly cancel

out the effects of δ = θ = 1/d, the difference between summation and averaging of the

unobserved components is unidentified. As a result, the distinction between stock and flow

type variables is not identified for multi-frequency unobserved component models. Thus, it

is the researcher’s choice to let the accumulated unobserved components be flow or stock

type variables. An advantage of dealing with the accumulated unobserved components as

stocks, that is period averages, is that their end of period value will have the same variance
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across all frequencies, and the loadings in the measurement equation will capture the relative

importance of the unobserved components for each variable.

2.3 Estimation

We use the Kalman Filter’s prediction error decomposition to evaluate the log-likelihood

function and estimate the model parameters by maximum likelihood. The Kalman filter is

an algorithm for sequentially updating a linear projection for the system. The initial state

vector entering the recursive process is assumed to be random with mean a1|0 = 0 and diffuse

variance matrix P1|0. Given the starting values at|t−1 and Pt|t−1, the prediction error, vt,

and the mean squared error (MSE), Ft, are calculated by

vt = yt −Ztat|t−1 and Ft = ZtPt|t−1Z
�
t , (21)

where at|t−1 = E(αt|Yt−1) with Yt−1 = (y1,y2, . . . ,yt−1) and Pt = E[(αt − at|t−1)(αt −

at|t−1)�]. Next, the inference about the current value of αt is updated based on the observa-

tion of yt to produce

at|t = at|t−1 + Pt|t−1Z
�
tF

−1
t vt , with MSE Pt|t = Pt|t−1 − Pt|t−1Z

�
tF

−1
t ZtP

�
t|t−1 , (22)

where at|t = E(αt|Yt) and Pt|t = E[(αt − at|t)(αt − at|t)�]. Finally, the state equation is

used to forecast the state at time t+ 1

at+1|t = Tat|t , with MSE Pt+1|t = TPt|tT
� +Q , (23)

which in turn are used to find vt+1 and Ft+1. Once the algorithm iterates through the

complete time series, the value of the log-likelihood can be calculated from

logLt = −τN

2
log(2π)− 1

2

τ�

t=1

(log |Ft|+ v
�
tF

−1
t vt) , (24)
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for given parameter values. Then, the log-likelihood function can be maximized with respect

to the unknown parameters of the system.

If some of the indicators are not observed on a given day t, the vector yt collapses to y
∗
t

with n
∗
< n, and the rows corresponding to the missing yt values are eliminated from the

measurement equation

y
∗
t = Z

∗
t αt . (25)

When n
∗ = 0, that is when the full yt vector is missing, the algorithm sets vt = 0 and

F
−1
t = 0, and the Kalman filter reduces to the prediction step

at+1|t = Tat|t , with MSE Pt+1|t = TPt|tT
� +Q . (26)

This feature of the Kalman filter is convenient at the end of the sample where it can be

used to produce out-of-sample predictions of the state variables. Then, one can obtain

forecasts of the indicators by plugging the predicted state into the measurement equation.

The Kalman smoother (Harvey, 1989, p. 149) can be used to find in-sample estimates of the

state variables, which can then be used to backcast any of the as yet unobserved indicators.

By iterating the Kalman filter from the end of the sample (time T ) forward, we obtain the

h-step-ahead forecasts yT+h of the variables entering the model.

2.4 Levels vs. Differences

Economic time series are often characterized as unit root processes, and this gives rise to

two different approaches to specification and estimation of mixed-frequency factor models.

The choice is to either explicitly model any long-run equlibrium relationships that exist

among the indicators, or remove any non-stationarity from each indicator by differencing

them before modeling. In the first approach, the number of common factors is objectively

determined by the number of common stochastic trends, s, in the n observed series, and

can be deduced from the n− s cointegrating relationships in the system. The cointegrating
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vectors are the n − s rows of an (n − s) × n matrix A which has the property AL̊ = 0, so

that premultiplying (1) with A gives

Aẙt = AG̊�t , (27)

an (n − s) × 1 stationary process. In contrast, when the stochastic trends are removed

by differencing the series, the number of common factors may be estimated by principal

component analysis. Yet the existing literature on mixed-frequency strict factor models

generally restricts the number of common factors to a single measure of the latent business

conditions index.

Conversion to differences eliminates the need to estimate multiple factors and focuses

attention on the single factor as a measure of current business conditions. However, besides

extracting a current conditions index, most of the literature also attempts to illustrate an

improvement in forecasting performance through the use of mixed-frequency data in sta-

tionary single-factor models (SSFM).3 But modeling differences when the indicators in levels

contain common stochastic trends may leave the model misspecified (see section 2.5) and

lead to poor forecasts. In addition, the conversion to differences discards the relationship

between variable levels, and may amplify the noise relative to the signal in the series: high

frequency indicators usually contain a large amount of noise, and differencing them further

weakens their already poor signal to noise ratio. If stationary linear combinations of the non-

stationary indicators exist, that is, they are cointegrated, it may be optimal even for short

horizon forecasting to let the factors capture the common stochastic trends (Christoffersen

and Diebold, 1998).

3Predicted values of the indicators are derived by reversing the differencing transformation: the predicted
differences are integrated from the last observation forward to obtain forecasts of the level of indicators.
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2.5 Misspecification of SSFM for Data with Common Stochastic

Trends

Below we illustrate the misspecification of stationary single factor models if the data contains

multiple common stochastic trends. To keep the analysis as simple as possible, our data gen-

erating process contains only first order dynamics and we begin by restricting our attention

to the base frequency. Specifically, assume that the observed low frequency variables, yt,

are aggregates of their latent high frequency counterparts, ẙt, and the true data generating

process (DGP) is given by the common trends factor model (CTFM) at the base frequency,

ẙt = L̊ft + G̊�t,

where ft = ft−1 + ηf,t, ηf,t ∼ N(0,Qf ) (28)

and �t = η�,t, η�,t ∼ N(0,Q�) .

Transforming the DGP by first differencing gives us

∆ẙt = L̊∆ft + G̊∆�t

with ∆ft = ηf,t, (29)

and ∆�t = η�,t − η�,t−1 .

Note, the implied model in equation (29) is different from the SSFM commonly used in the

literature,

∆ẙt = L
∗
f
∗
t +G

∗
�
∗
t

with f
∗
t = T

∗
f f

∗
t−1 + η

∗
f,t (30)

and �
∗
t = η

∗
�,t .
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The stationary model in (29) requires the same number of factors as present in the

DGP, and precludes modeling the factor as a dynamic process. In addition, in the first

differenced DGP (29), the idiosyncratic component follows an MA(1) process with a unit

root. In contrast, the SSFM in equation (30) contains a single common factor regardless

of the number of factors in the DGP, and the idiosyncratic components are assumed to

follow stationary iid processes. The models in (29) and (30) are equivalent when T
∗
f = 0,

η
∗
�,t = η�,t − η�,t−1, and the DGP contains a single common trend, but if the DGP contains

multiple trends the two models cannot be reconciled.

To explore the relationship between the SSFM and the CTFM further, integrate the

differences, ∆ẙt, in equation (30),

ẙt = ẙ1 +
t�

τ=2

∆ẙτ

= ẙ1 +L
∗

t�

τ=2

f
∗
τ +G

∗
t�

τ=2

�
∗
τ

= ẙ1 +L
∗
f̆
∗
t +G

∗
�̆
∗
t . (31)

where f̆ ∗
t is a common stochastic trend and �̆

∗
t is a vector of idiosyncratic stochastic trends.4

The integrated SSFM, equation (31), differs from the CTFM (DGP) in several respects. In

the former, the stochastic trends are not random walks because their increments follow an

AR(1) process. In the latter the number of common trends is determined by the cointegrating

rank of the system, and the idiosyncratic components are assumed to be stationary.

Now consider a multi-frequency model, in which the low frequency variables yt are defined

as period aggregates of their latent high frequency counterparts, ẙt. Specifically, write the

4The presence of idiosyncratic stochastic trends in (31) implies that the level of the extracted coincident
index will arbitrarily diverge from the level of the indicators, and therefore the former will not be a good
estimator of the latter.

13



value of the j
th element of ẙt in (28) aggregated to the observation frequency as

yj,t = θj

dj�

δ=1

ẙj,t−dj+δ = L̊j (θj

dj�

δ=1

ft−dj+δ) + G̊jj (θj

dj�

δ=1

�j,t−dj+δ) = L̊jf̃t + G̊jj �̃j,t , (32)

where L̊j is the j
th row of L̊, and G̊jj is the j

th element on the diagonal of G̊. Differencing

at the observation frequency gives us

∆djyj,t = yj,t − yj,t−dj = θj

dj�

δ=1

∆dj ẙj,t−dj+δ

= L̊j (θj

dj�

δ=1

∆djft−dj+δ) + G̊jj (θj

dj�

δ=1

∆dj�j,t−dj+δ) (33)

= L̊j∆dj f̃t + G̊jj∆dj �̃j,t ,

where ∆dj denotes the change during the observation period. Note, the change during

the observation period can be written as the sum of base period differences ∆dj ẙj,t =
�dj

ι=1 ∆ẙj,t−dj+ι, so that

∆djyj,t = yj,t − yj,t−dj = θj

dj�

δ=1

dj�

ι=1

∆ẙj,t−2dj+δ+ι

= L̊j (θj

dj�

δ=1

dj�

ι=1

∆ft−2dj+δ+ι) + G̊jj (θj

dj�

δ=1

dj�

ι=1

∆�j,t−2dj+δ+ι) (34)

= L̊j

dj�

ι=1

∆f̃t−dj+ι + G̊jj

dj�

ι=1

∆�̃j,t−dj+ι .

This expression can be simplified by expanding the double summation into

∆djyj,t = θj(∆ẙj,t−2dj+2 + 2∆ẙj,t−2dj+3 + · · ·+ dj∆ẙj,t−dj+1 + · · ·+ 2∆ẙj,t−1 +∆ẙj,t) , (35)

but (35) is still cumbersome to implement if the base frequency is daily and the dataset con-

tains quarterly observations, that is, when dj = 90.5 In fact,Evans (2005) and Aruoba et al.

5Mariano and Murasawa (2003), Hyung and Granger (2008) and others used (35) in mixed frequency
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(2009), who used a daily base frequency in their studies, approximated (35) by considering

the daily contribution of a latent variable ∆ẏj,t to the observed one ∆djyj,t

∆djyj,t = θj(∆ẏj,t−dj+1 + · · ·+∆ẏj,t−1 +∆ẏj,t) = θj

dj�

δ=1

∆ẏj,t−dj+δ , (36)

where ∆ẏj,t is the j
th row of ∆ẏt which can be defined similarly to (30)

∆ẏt = L̇
∗
ḟ
∗
t + Ġ

∗
�̇
∗
t with ḟ

∗
t = Ṫ

∗
f ḟ

∗
t−1 + η̇

∗
f,t and �̇

∗
t = η̇

∗
�,t . (37)

Note that while (35) spans two observation periods, (36) only spans one, and therefore the

approximation directly affects the dynamics of the model.

To summarize, under the DGP given by the CTFM, the SSFM described by (36) and (37)

contains an incorrect number of common stochastic trends, introduces idiosyncratic stochas-

tic trends, and has mis-specified dynamics both at the base frequency and the observation

frequency. These forms of misspecification will affect the decomposition of the observed data

into common and idiosyncratic components and the forecasting performance of the model.

3 Empirical Application

To illustrate the forecast performance of our CTFM relative to the more common SSFM,

we make use of mixed frequency data on Hawaii’s tourism industry. Table 1 summarizes

the sampling frequencies, reporting lags and sample periods of indicators in our study. 6

The indicator series are lined up against time so that observations fall on the last day of

the representative period: weekly values are matched with the Sunday of the week for which

models of monthly and quarterly data, that is, with dj = 3.
6Weekly passenger count is not simply a high-frequency version of visitor arrivals. The daily passenger

count series is based on crew reports on domestic flights and VIP reports for international flights. No daily
counts are available for flights from Canada or from charter flights. And, daily passengers include residents
returning to Hawai‘i. On a monthly basis, all airlines report exact passenger counts, and survey results and
customs reports are used to subtract the number of returning residents to obtain monthly visitor arrivals
numbers.
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Table 1: Tourism Indicators
Sampling Freq. Reporting Lag Start End

Airline passenger counts, PC weekly 1 day 10/7/00 8/28/10
Total Visitor arrivals, V IS monthly 1 month 1/31/00 7/31/10
Real Visitor Expenditures, V EXPR quarterly 4 months 3/31/01 6/30/10

the value is measured, monthly and quarterly values are matched with the last day of the

month and quarter, respectively, for which the value is measured. Figure 1 displays the levels

and differences of the series. The plots of differences in the right hand panel of Figure 1

indicate that removing the trend from the indicators results in noisy series. This outcome

Table 2: AR(1) estimates

∆ ln yt = β ∆ ln yt−1 + �t

PC V IS V EXPR

estimate -0.291 -0.095 0.212
p-value 0.000 0.132 0.183
Note: Autoregressive coefficient estimates and their marginal signifi-
cance level in a first order autoregressive model of differences at the
observation frequency.

is confirmed by the negative and insignificant first order autocorrelation of the differences

presented in Table 2. Table 3 reports results from augmented Dickey-Fuller (1979) (ADF)

Table 3: Augmented Dickey-Fuller tests

∆yt = α + βyt−1 +
�m

k=1 θt∆yt−k + �t

H0 : β = 0

Series 1 + β̂ ADF t-test p-value

PC 0.906 -2.437 0.132
V IS 0.890 -2.662 0.084
V EXPR 0.909 -2.086 0.251
Note: Column 1 lists the series tested for a unit root, column 2
presents the estimated AR1 parameter, column 3 the the ADF t-test
for the null hypothesis β = 0, and column 4 presents the marginal
significance level for the ADF t-test.

tests for the null hypothesis of a unit root in each of our indicators. We can not reject the

null hypothesis of a unit root for any of the series at the 5% significance level. To test for

16



!""" !""! !""# !""$ !""% !"&"

&!'

&('

PC

!""" !""! !""# !""$ !""% !"&"

!'"

!!'

"

!'
!PC

!""" !""! !""# !""$ !""% !"&"

'""

$""

VIS

!""" !""! !""# !""$ !""% !"&"

!&""

"

!VIS

!""" !""! !""# !""$ !""% !"&"

&!""

&#""

VEXPR

!""" !""! !""# !""$ !""% !"&"

!!""

"

!""

!VEXPR

Figure 1: Time series plots of levels and differences of indicators.

cointegration among the indicators, we apply Johansen’s (1988) rank test to a temporally

aggregated quarterly system. Because of the very short sample (37 quarterly values), our

test likely suffers from low power.7 Therefore, we use the rank test to obtain initial estimates

of the number of cointegrating vectors and verify our findings through unit root tests on the

residuals from our CTFM.

Results in Table 4 indicate that we can reject the null hypothesis of no cointegrating

vectors at the 7% significance level based on the Trace test. We are unable to reject the

hypothesis of one or fewer cointegrating vectors at the 10% significance level on the basis of

either test. We tentatively conclude that our three indicators contain two common stochastic

trends. We verify this result by estimating our model with one and two factors containing

7While the number of cointegrating vectors in the system is invariant to temporal aggregation, the finite
sample power of tests may fall as the number of observations decline (see Marcellino (1999)).
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Table 4: Cointegration rank tests

Estimation period: 2001:1 - 2010:2 (T = 37).
Rank Eigenvalue Trace test p-value Lmax test p-value

r = 0 0.410 33.792 0.069 19.513 0.119
r ≤ 1 0.267 14.279 0.277 11.467 0.227
r ≤ 2 0.073 2.812 0.623 2.812 0.622
Note: Column 1 lists the null hypothesis of zero, at least one, and at least two
cointegrating vectors; column 2 the eigenvalue; column 3 the trace test; column
4 the marginal significance level for the trace tests; column 5 the maximum
eigenvalue test; and column 6 the marginal significance level for the Lmax test.

a unit root, and find that the idiosyncratic errors become stationary once two such factors

are included in the model. In other words, a linear combination of two common stochastic

trends is able to explain the non-stationarity of the individual variables.

To reduce the number of estimated parameters, we standardize all variables. In addition,

we benchmark the shorter non-stationary series to the longest one: we set the mean and

variance of the shorter series equal to the mean and variance of a subsample of the longest

series, where the subsample is the period over which the long and the short series overlap.

This benchmarking is equivalent to setting the mean distance between cointegrated variables

to zero. Predicted values of the indicators are obtained by reversing the standardization and

the benchmarking of the forecasts produced by the model.

To keep the model as simple as possible, we follow Nunes (2005), Aruoba et al. (2009), and

others by restricting the unobserved components to at most first order dynamics. Specifically,

we contrast the CTFM (32), with the SSFM (37), both described in Section 2.5. While these

models may suffer from misspecified dynamics, the dynamic structure won’t change as new

data becomes available, as it would if we allowed for variable lag lengths.
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3.1 Estimation Results

The estimation results for the CTFM with two stochastic trends are displayed in Table 5.8

Both trends have significant loading coefficients, λr
j,i, for each indicator. The loading of the

Table 5: Estimation Results: Common-Trends Factor Model
λ
1
PC,W λ

1
V IS,M λ

1
V EXP,Q λ

2
V IS,M λ

2
V EXP,Q

estimate 0.076 0.079 0.057 0.004 0.026
p-value 0.000 0.000 0.000 0.002 0.000

gPC gV IS gV EXP

estimate 0.777 1.283 0.341
p-value 0.000 0.000 0.571
Note: Estimate is the maximum likelihood parameter estimate for
CTFM with two common trends; p-value is the marginal significance
level for each parameter. The value of λ2

PC,W is fixed at zero to satisfy
identification requirements (see Section 2.2).

quarterly V EXP idiosyncratic component is insignificant, implying that the V EXP series

is mostly determined by the combination of the two stochastic trends.

Estimation results for a SSFM are displayed in Table 6. The noise in the differenced

Table 6: Estimation Results: Stationary Single-Factor Model

φ λPC,W λV IS,M λV EXP,Q

estimate -0.809 3.352 11.425 13.905
p-value 0.000 0.000 0.000 0.000

gPC gV IS gV EXP

estimate 0.830 0.984 7.248
p-value 0.004 0.755 0.000
Note: Estimate is the maximum likelihood parameter estimate for the
SSFM; p-value is the marginal significance level for each parameter.

series causes the common component to be negatively autocorrelated at the daily frequency.

The value of φ implies that the half-life of a shock is about three days and its impact decays

to 23% of its original value within a week.

Figure 2 displays the decomposition of the standardized levels into the two common

stochastic trends and the idiosyncratic components, and Figure 3 displays the decomposition

8We estimated the model by Ox 5.10 (Doornik, 2007) and SsfPack 2.2 (Koopman et al., 1999).
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Figure 2: Standardized levels, and their decomposition into common stochastic trends and
stationary idiosyncratic components.

of the standardized differences into a common factor and idiosyncratic components. While

forecasts from the CTFM will be determined predominantly by the values of two factors,

forecasts of the indicators from the SSFM will be determined by the integrated value of a

single factor (“Coincident Index”) and the integrated values of the idiosyncratic components.
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tor and idiosyncratic components. The integrated common factor can be interpreted as a
business conditions index.
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3.2 Forecasting Results

The quality of forecasts depends in part on what information is available at the time the

forecast is made. To evaluate the forecasting performance of our mixed-frequency factor

model, we carefully replicate the historical flow of information.9 The model is estimated,

and a forecast is made on the last day of each month between January 2005 and August

2010. At each forecast date, T , the latest available weekly observation is for the week ending

on the last Sunday of the given month (the Sunday falling between T and T − 6). The

last recorded monthly observation is for the previous month (with a time stamp of about

T −30).10 The quarterly indicator is only available four months after the end of the quarter.

That is, on the last day of the first month of every quarter V EXPR becomes available for

the quarter ended at T −120. Figure 4 gives an illustration of the timing of data releases and

forecast horizons relative to the forecast date T . As the forecast date moves forward, the

amount of available information increases, and for a given target date the forecast horizon

shrinks. We expect the flow of high frequency information between T −30 and T to improve

estimates of V IS, and the flow of information between T − 120 and T to improve estimates

of V EXPR series.

Tables 7 and 8 compare the accuracy of predictions from the two mixed frequency factor

models with those from a benchmark random walk model for the two low frequency indicators

at their observation frequency. We report the root mean squared error (RMSE) of forecasts,

the percentage difference in RMSE across models, and the marginal significance level of

Diebold and Mariano (1995) tests for forecast accuracy.

The nowcasts of visitor arrivals (V IS) produced by the mixed-frequency models benefit

from the availability of weekly passenger counts (PC): the CTFM and SSFM show significant

reductions in RMSE of 38% and 21%, respectively, over the RW model. While the CTFM

9Note that we do not construct a real-time data set as in Giannone et al. (2008). Data on passenger
counts is not revised, while data on total visitor arrivals and spending are revised annually. Unfortunately,
the preliminary data on arrivals and spending is not available for the purpose of constructing a real-time
data set.

10For simplicity, our notation for indexing time horizons assumes 30 days per month.
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Figure 4: Illustration of the horizon for indicator estimates (backcasts, nowcasts, forecasts)
relative to the forecast date T and the expansion of the information set. Negative horizons
represent backcasts. V IS estimates with horizon up to 30 days are nowcasts, and with
horizon 30 days and higher are forecasts. V EXP estimates with horizon up to 90 days are
nowcasts, and with horizon 90 days and higher are forecasts. The white arrows indicate target
dates of quarterly V EXPR backcasts. The grey arrows indicate target dates of monthly
V IS nowcasts and forecasts. The black arrows indicate target dates of both, monthly V IS

and quarterly V EXPR nowcasts and forecasts.

retains its advantage over the RW model for all considered forecast horizons where intra-

period information is not available, the forecasting precision of the SSFM declines faster,

and becomes worse than that of the RW model at horizon (T ) + 210.

The forecasts of real visitor expenditues (V EXPR) produced by both mixed frequency
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Table 7: V IS Forecasting Results: Comparison of CTFM, SSFM and RW Model

RMSE % Difference DM p-value
Horizon CT SS RW CT/SS CT/RW SS/RW CT/SS CT/RW SS/RW
(T ) + 300 41.7 44.9 42.6 -7.3 -2.1 5.5 0.01 0.56 0.09
(T ) + 270 40.0 42.9 41.0 -6.7 -2.5 4.5 0.05 0.56 0.19
(T ) + 240 36.3 39.2 38.3 -7.3 -5.3 2.2 0.01 0.20 0.54
(T ) + 210 35.5 37.3 36.3 -4.7 -2.2 2.6 0.10 0.60 0.44
(T ) + 180 32.8 34.5 34.8 -5.0 -5.8 -0.9 0.11 0.14 0.81
(T ) + 150 28.2 28.9 30.6 -2.5 -8.1 -5.7 0.48 0.16 0.22
(T ) + 120 25.2 26.2 27.4 -4.1 -8.4 -4.4 0.34 0.15 0.40
(T ) + 90 22.4 23.0 25.1 -2.8 -10.6 -8.0 0.55 0.14 0.15
(T ) + 60 20.3 21.2 21.3 -4.1 -4.7 -0.7 0.50 0.67 0.93
(T ) + 30 17.1 17.2 19.6 -0.9 -12.9 -12.1 0.88 0.17 0.12
(T ) + 0 10.5 13.5 17.0 -22.3 -38.6 -21.0 0.01 0.00 0.01
Note: RMSE of V IS forecasts. The forecast horizon is measured relative to the forecast date, T .
The CTFM and SSFM are compared to each other and a quarterly RW model of V IS via the
percentage difference between the RMSE of forecasts from each model and the marginal significance
of Diebold and Mariano (1995) test.

Table 8: V EXP Forecasting Results: Comparison of CTFM, SSFM and RW Model

RMSE % Difference DM p-value
Horizon CT SS RW CT/SS CT/RW SS/RW CT/SS CT/RW SS/RW
(T ) + 300 117.8 134.1 147.2 -12.2 -20.0 -8.9 0.16 0.10 0.10
(T ) + 270 111.1 132.0 144.7 -15.8 -23.2 -8.8 0.05 0.07 0.17
(T ) + 240 109.2 116.1 124.9 -5.9 -12.6 -7.1 0.51 0.33 0.21
(T ) + 210 94.2 110.0 124.9 -14.4 -24.6 -11.9 0.16 0.07 0.05
(T ) + 180 84.3 107.0 122.4 -21.2 -31.1 -12.6 0.02 0.03 0.07
(T ) + 150 82.5 91.6 99.5 -9.9 -17.1 -8.0 0.38 0.28 0.31
(T ) + 120 69.1 85.7 99.5 -19.4 -30.6 -13.8 0.12 0.07 0.10
(T ) + 90 63.7 84.6 97.5 -24.7 -34.6 -13.2 0.04 0.07 0.18
(T ) + 60 59.1 70.3 74.9 -16.0 -21.1 -6.2 0.27 0.32 0.55
(T ) + 30 51.0 67.1 74.9 -24.1 -32.0 -10.4 0.12 0.12 0.27
(T ) + 0 43.3 64.3 73.3 -32.7 -40.9 -12.3 0.03 0.06 0.26
(T )− 30 32.4 41.8 44.6 -22.5 -27.3 -6.3 0.14 0.12 0.54
(T )− 60 31.8 42.9 45.4 -25.8 -29.9 -5.5 0.09 0.10 0.60
(T )− 90 29.8 42.4 44.5 -29.8 -33.1 -4.7 0.07 0.07 0.65
Note: RMSE of V EXPR forecasts. The forecast horizon is measured relative to the forecast date,
T . The CTFM and SSFM are compared to each other and a quarterly RW model of V EXPR
via the percentage difference between the RMSE of forecasts from each model and the marginal
significance of Diebold and Mariano (1995) test.
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factor models are more precise than those produced by the random walk model for all

horizons. But the improvement achieved by the CTFM is significantly greater than that

of the SSFM at virtually all horizons. The RMSE reduction over the RW model ranges

from 12% to 40% for the CTFM, and from 4% to 13% for the SSFM. Apparently, the use

of two common stochastic trends captures the evolution of the indicators more effectively

than a single stationary factor. The transformation in the SSFM removes all long-run trend

information leaving the model with a set of relatively noisy variables to analyze. When

the differences are re-integrated to obtain levels forecasts, there is only a single common

factor underlying the forecasts. Yet our rank tests and the analysis of the cointegrated

system tell us that there are two common stochastic trends present in the three variables,

implying that the SSFM is misspecified. Forecasts from the CTFM that make use of a linear

combination of the two common stochastic trends have a lower RMSE than forecasts that

discard this additional information. Specifically, the CTFM incorporates the intra-period

information differently and propagates it to the forecasts more accurately than is possible in

the misspecified SSFM.

Figure 5 displays the RMSE for V EXPR across forecast horizons. The quarterly RW

model of V EXPR does not benefit from the high frequency information that becomes avail-

able within a quarter. Therefore the RMSE from this model is constant between V EXPR

release dates but exhibits a jump on V EXPR release dates. The mixed frequency models

are re-estimated for each expansion of the information set. While the updated parameter

values may affect the forecasts, we expect the main benefit of mixed frequency models to

come from the incorporation of intra-quarter high frequency observations into the end-of

quarter V EXPR estimates. However, there is no intra-quarter information released during

the three months preceding a V EXPR target between T − 30 and T − 90.11 Therefore, for

these horizons the precision of the mixed frequency models is only influenced by updated

parameter values and remains relatively stable. In contrast, the mixed frequency V EXPR

11For example, notice that the information set prior to the March 31 target date is constant in Figure 4.
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Figure 5: RMSE of V EXPR forecasts for an increasing information set and declining forecast
horizon. Horizon (T ) + 300 corresponds to a ten month ahead forecast from the forecast
date, T . Horizon (T )− 120 corresponds to the release date of V EXPR.

estimates for horizons (T )+60 through (T )−30 are directly affected by the releases of weekly

and monthly series. The impact of this high frequency information is then propagated to

longer horizon forecasts. The almost linear evolution of RMSE and the lack of jumps at

V EXPR release dates imply that the CTFM incorporates the intra-quarter information

more effectively than the SSFM.

4 Conclusion

We extend the existing literature on small mixed frequency single-factor models by allowing

for multiple factors, considering indicators in levels, and allowing for cointegration among

the indicators. We show that the stationary single-factor models that are frequently used

to extract coincident indicators are miss-specified if the data contain common stochastic

trends. Our empirical results suggest that when the constituent indicators are cointegrated,

modeling common stochastic trends, as opposed to eliminating them, will improve forecasts.
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Our common-trends factor model outperforms the stationary mixed frequency single-factor

model, at all analyzed forecast horizons with up to 32% gain in precision as measured by

the root mean squared forecast error.
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