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Abstract 

 
We model a dynamic common property resource game with unobservable actions and non-linear stock 
dependent costs.  We propose a strategy profile that generates a worst perfect equilibrium in the 
punishment phase, thereby supporting cooperation under the widest set of conditions.  We show under what 
set of parameter values for the discount rate, resource growth rate, harvest price, and the number of 
resource users, this strategy supports cooperation in the commons as a subgame perfect equilibrium.  The 
strategy profile that we propose, which involves harsh punishment after a defection followed by 
forgiveness, is consistent with human behavior observed in experiments and common property resource 
case studies. 
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1. Introduction 

Since Gordon (1954), economists have known that individuals have incentives for excessive 

exploitation of common property resources.  These incentives for excessive exploitation lead to 

the “tragedy of the commons” (Hardin, 1968).  There are two potential externalities that lead to 

misguided incentives.  Increased efforts by harvesters can impose crowding costs on other 

harvesters; this is at its core a static externality (Brown, 1974).  This situation is quite similar to 

that facing individuals contributing to a public good. Indeed, one can think of the decision to 

reduce harvesting as a sort of contribution to the public good of “less crowding.”  There may 

also be a dynamic externality: larger current harvests reduce future resource stocks, which in turn 

may increase future harvest costs or constrain future harvest levels (Mason and Polasky, 1997).  

With either static or dynamic externalities, privately optimal behavior leads to socially excessive 

harvesting of a common property resource, yielding smaller welfare flows to society. 

 Despite the grim predictions of tragedy, a variety of researchers have found that many 

actual common-property harvesting regimes manage common property resources in a reasonably 

efficient manner, often for long periods of time, even with many agents involved (for reviews see 

Feeny, Hanna, and McEvoy, 1996; Ostrom 1990, 2000).  The typical successful management 

regime has some means of limiting access to the commons and some means of punishment for 

over-harvesting.  Access may be restricted to members of a particular community or group.  

Community members are responsible for monitoring and enforcement.  Punishment can involve 

some type of loss of privilege, either temporary or permanent, or, for major offenses, banishment 

from the group.    

 A large number of experimental studies have investigated the common property 

problem, as well as the closely-related public goods provision problem (Ledyard, 1995).  While 
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many studies have found tendencies towards privately optimal behavior, several studies point to 

the possibility of more socially efficient outcomes.  In one class of studies, subjects are able to 

identify specific players as defectors.  Several papers show that when defectors can be singled 

out for punishment more socially efficient outcomes result (Casari and Plott, 2003; Fehr and 

Gachter, 2000a; Ostrom, Walker and Gardner, 1992).  However, the observation of increased 

social efficiency does not rely solely on the ability to punish specific individuals who defect.  

Mason and Phillips (1997) study a game in which punishments cannot be tailored to the 

individual, but they still find that more socially efficient outcomes obtain.  In a second class of 

studies, socially attractive outcomes occur even though subjects only know aggregate behavior 

(Cason and Khan, 1999; Chermak and Krause, 2002; Isaac and Walker, 1988; Hackett, Schlager 

and Walker, 1994; Ostrom, Gardner and Walker, 1994).  In the majority of these studies, more 

cooperative outcomes are enhanced by communication.  While several of these papers place 

subjects in a finitely-repeated game, some do not (Ostrom, Walker and Gardner, 1992; Mason 

and Phillips, 1997; Sadrieh and Verbon, 2005).  These various empirical observations 

underscore the importance of understanding, from a conceptual point of view, how cooperative 

arrangements might take shape. 

There has long been interest in examining the theoretical underpinnings of cooperative 

behavior.  A rich literature in applied game theory has developed over the last two decades, 

evaluating the conditions under which equilibrium supports socially desirable outcomes in the 

presence of unilateral short-term incentives to deviate (Benhabib and Radner, 1992; Cave, 1987; 

Dutta, 1995a, 1995b; Dutta and Sundaram, 1993; Hannesson, 1997; Laukkanen, 2003; Polasky et 

al., 2006; Rustichini, 1992).  The basic thrust of this literature has been to show that 

cooperation in the commons can be supported as a subgame perfect equilibrium, under certain 
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conditions, through the use of strategies that include credible future punishment for deviations 

from the cooperative outcome.  Dutta (1995a) proves that cooperation can be sustained for 

sufficiently patient players, an extension of the folk theorem result for repeated games.  Several 

papers analyze dynamic resource games for arbitrary discount factors where payoffs are 

independent of stock (Benhabib and Radner, 1992; Cave, 1987; Dutta and Sundaram 1993; 

Rustichini, 1992).1  While assuming stock independence is analytically convenient, this 

approach eliminates dynamic cost externalities important for a wide range of real-world common 

property resources.  It also makes extraction to zero stock (extinction) profitable, which allows 

rapid extraction to extinction to be a credible punishment. Our analysis, like Hannesson (1997), 

Laukkanen (2003), and Polasky et al. (2006), explicitly considers the role of non-linear 

stock-dependent costs.  We follow Clark (1973), and others, in using a discrete time model in 

which the marginal cost of harvest declines with increasing stock. When marginal cost declines 

in stock, there can be a strictly positive stock level that generates zero profits and below which 

further harvest generates negative marginal profit. In this case, credible punishment strategies are 

more complex, typically involving an on-going path of harvesting rather than rapid extinction.    

 Another issue we address is imperfect monitoring of harvests.  Punishing individual 

defectors is possible only if the resource users can identify who cheated. Polasky et al. (2006) 

analyze a game with costless monitoring and individual punishment schemes.  However, 

monitoring is often prohibitively costly in the context of natural resource use.  Ostrom (1990) 

suggests that, though monitoring is an important factor behind cooperative use of commons, 

cooperation is observed in some settings with imperfect monitoring, a finding in the 

experimental literature as well.  In this paper, we assume that the resource stock level is 

observable but individual players’ actions are not observable.  When the resource stock falls 
                                                  
1 Dutta (1995b) assumes that payoffs are linear in stock.  
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below the cooperative level, what can be inferred is that someone cheated, but not who cheated.  

Therefore, punishment must be symmetric, targeting the whole group, rather than asymmetric, 

targeting a particular individual who cheated.  Abreu et al. (1990) analyzed cooperation under 

imperfect monitoring in repeated games.  This paper addresses cooperation under imperfect 

monitoring in a dynamic game where the stage game evolves endogenously given how the 

resource was used in previous periods. 

 Two prior papers, Hannesson (1997) and Laukkanen (2003), have addressed the issue of 

supporting cooperation in a common property resource with imperfect monitoring and non-linear 

stock dependent costs.  Laukkanen (2003) analyzed cooperation in a two-player game in which 

fish stocks migrate between exclusive harvest zones so that players move sequentially. 

Cooperative solutions are supported by the threat to revert to non-cooperative Nash equilibrium 

if cheating is suspected.  Hannesson (1997) uses a model similar to ours in that N players move 

simultaneously in a discrete-time common property harvest game.  Hannesson uses a simple 

punishment strategy in which players draw down the stock to the zero profit level of stock, 

where price equals marginal cost of harvest, in every period following a defection.   

In contrast, we use a two-part punishment scheme, with heavy penalties in the first 

phase followed by eventual recovery of the stock to the cooperative level in the second phase.  

With a two-part punishment scheme, using the worst perfect equilibrium (i.e., a subgame perfect 

equilibrium with the lowest possible payoffs) following a defection offers the strongest possible 

incentive not to defect in the first place.  In general, cooperation can be supported under a wider 

set of conditions by reversion to a worst perfect equilibrium rather than reversion to Nash 

equilibrium (Abreu et al., 1986; Abreu, 1988; Polasky et al., 2006).  Moreover, with a two-part 

punishment scheme it need not be the case that cooperation is harder to support as the group size 
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increases.  We present a numerical simulation in section 5 that suggests cooperation could be 

easier to support with four players than with three.  Our conjecture is that increases in group 

size have two conflicting effects.  On the one hand, increases in group size reduce the share of 

the cooperative pie that any one player is allocated; all else equal this would tend to make 

cooperation harder to support.  On the other hand, the set of potential punishers who must 

respond to an individual player that has cheated is larger when the group is larger.  All else 

equal, this reduces the degree to which any one individual must increase its harvest to inflict the 

punishment, which tends to lower the cost associated with following through with the 

punishment.  As such, larger punishments become credible, which tends to make cooperation 

easier to support.  The numerical results we present below show that the combined impact of 

these two conflicting effects will be to make cooperation easier to support when group size is 

increased starting from relatively small values – at least in the context of our numerical example.  

Ultimately, however, the former effect dominates, and cooperation becomes more difficult to 

support as group size rises.  These qualitative results are consistent with the experimental 

finding in Mason and Phillips (1997), who found more cooperative behavior with intermediate 

group sizes than with slightly smaller or slightly larger groups.  

 In the next section, we describe the dynamic common property resource game with 

unobservable actions and non-linear stock dependent costs. We characterize the cooperative 

outcome in section 3.  In section 4, we analyze strategies designed to support cooperation as a 

subgame perfect equilibrium.  We propose a two-part punishment scheme and demonstrate that, 

this two-part scheme can constitute a worst perfect equilibrium once a player has cheated, which 

then supports cooperation as a subgame perfect equilibrium under the widest possible set of 

circumstances.  Section 5 contains a numerical illustration.  Section 6 contains concluding 
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comments.   

 

2. The Game 

We consider a discrete-time dynamic game with  players, indexed by i, who jointly 

harvest a common property renewable resource.

3≥N

2  In every period t (= 0, 1,…), each player i 

chooses a harvest level, .  We assume that players choose harvest strategies in period t 

simultaneously.  Define total harvest in period t as .  Let s

0≥ith

∑
=

=
N

i
itt hh

1
t equal the amount of 

stock at the beginning of period t and zt equal the stock at the end of period t (escapement), with 

.  Between the end of period t and the start of period t+1, stock grows according to a 

biological growth function: .  We assume that the biological growth function, g(.), 

is a positive and strictly concave function for stock sizes between 0 and a positive carrying 

capacity (K):

ttt hsz −=

)(1 tt zgs =+

0)(),(  and,)(,0)0( <′′<== sgsgsKKgg  for all ),0( Ks∈ .  The initial stock 

 is given.  ],0(0 Ks ∈

We assume that players observe stock at the beginning (st) and end (zt) of each period so 

that they know aggregate harvest (ht), but that there is imperfect monitoring of harvests: player i 

cannot observe hjt for j ≠ i.  Each player’s action in period t can depend on the initial level of 

stock in period t (st) and the history of harvests through period t-1.  Player i’s strategy in period 

t specifies i’s action conditional on the information the player has in period t.  We consider only 

pure strategies within a given period.   

 We assume that unit harvest cost depends upon stock size, c(s).  The unit harvest cost 

function c is twice continuously differentiable, with , 0)( >sc 0)(' <sc , .  We also 0)('' >sc
                                                  
2 Note that with N = 2, the other player’s harvest can be inferred from knowledge of one’s own harvest and total 
harvest.   
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assume that unit costs rise sufficiently rapidly as stock gets small so that  for any 

positive stock.  Let p>0 be the exogenous price of harvest.  For this to be an economically 

interesting problem, it must be worth harvesting at some stock level, and so we assume that 

.  Define the zero profit level of stock as

∫ ∞=
s

dwc
0

)(ω

)(Kcp > s : 0)( =− scp .   

 In any period, we assume that player i receives a share of total returns equal to i’s share 

of total harvest.  Thus, player i’s return in period t is given by 

⎪
⎩

⎪
⎨

⎧

>∞−

≤−
= ∫

−

.for   ,

for  ,)]([
),,...,( 1

tt

s

hs
tt

t

it

tNtti

sh

shdcp
h
h

shhr

t

tt

ωω
 

In essence, the assumption of equal sharing of returns is equivalent to assuming that the share of 

harvest for each player is constant throughout the time period.  Alternatively, one could assume 

that all players harvest at the same rate during the time that they are active but that players 

harvesting more stock during the time period harvest for a longer amount of time.  This 

alternative approach would weight harvest costs more heavily toward players that harvest greater 

amounts, i.e., that players with smaller shares earn higher profit per unit of harvest.   

Each player’s payoff for the entire game is given by the discounted sum of the period 

returns. We assume there is a common discount factor δ, 0 < δ < 1, by which payoffs are 

discounted from one period to the next.   

 

3. Characterizing cooperative outcome 

The joint-rent maximization problem is given by 

∑ ∫
∞

=
−

−
∞
= 0}{

)]([max
0 t

s

hs

t

h

t

tttt

dcp ωωδ  
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s.t. ),(1 ttt hsgs −=+   ,0≥th , ,...1,00≥ts =t  given  ].,0(0 Ks ∈

We can rewrite this problem as a dynamic programming problem focusing on escapement rather 

than harvest as the choice variable.  The Bellman equation for this formulation is: 

  . ))(()]([max)(
0 t

s

z
szt zgVdcpsV

t

t
tt

δωω +−= ∫≤≤

An optimal solution to the Bellman equation, which characterizes optimal escapement (z*) in 

every period with positive harvest, must satisfy   

,0*))((*)('*)]([ =′+−− zgVzgzcp δ  

where .  Such z* exists under the assumptions on c and g. We 

maintain the following assumption throughout this paper. 

*))](([))((' * zgcpzgV −=

Assumption 1. ( ) 0))](()[('))(( <−+−−
∂
∂ sgcpsgscp
s

δ  for all s. 

Under Assumption 1 there is a unique optimal escapement.  The optimal harvest policy, , is  *h

⎩
⎨
⎧ ≥−−

=
,0*

.0
*

)(* zs
otherwise

ifzs
sh  

For cases where , the value function is  *0 zs ≥

  

*)),((
1

)()]([
1

)]([

*))(()]([)(

0

*)(

**

*
0

0

0

zgwswdcpdcp

zgVdcpsV

zg

z

s

z

s

z

δ
δωω

δ
δωω

δωω

−
+=−

−
+−=

+−=

∫∫

∫
 

where  for .  When s∫ −≡
s

z

dcpsw
*

)]([)( ωω *zs ≥ 0 < z*, the optimal solution requires no 

harvest until stock has increased above z*. Define T(s0) by 

{ }1)(,00,min)( 1
*

0 ≥=≥=≥≡ − lallforsgslallforhzstsT lllt ,  
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i.e. the minimum number of iterations of the growth function g(.) with *)...))((...( 0 zsgggst ≥= .  

Then the value function is given by 

  
⎪⎩

⎪
⎨
⎧

<
≥

=
,)(
,)(

)( *
0

)(

*
00

0
)0(

0 zsifsV
zsifsV

sV
sT

sTδ
 

where  is the stock size after T(s)( 0sTs 0) periods of growth starting from stock size s0.   

We assume that the cooperative solution among N players involves an equal division of 

harvest among the players:  hi*(s0) ≡ h*(s0)/N, for all i.  Let NVv /=  be the individual 

payoff under cooperation. 

 

4. Characterizing a subgame perfect strategy profile 

 

4.1 A two-part punishment scheme to support cooperation 

Here we propose a history-dependent strategy profile  that supports a cooperative outcome 

and uses a two-part punishment scheme that generates a worst perfect equilibrium once a player 

has defected from the cooperative outcome.  Reversion to a worst perfect equilibrium when a 

player cheats yields the greatest possible punishment, which in turn gives the greatest incentive 

not to cheat.  Note that a player can always set h

*σ

it=0 for all t yielding a payoff of 0.  An 

equilibrium punishment strategy cannot force a player to earn present value negative payoffs, 

though losses in some periods are possible if offset by positive payoffs in other periods.   

 

Strategy profile : *σ

Phase I  In period 0, each player i plays .  If , with 

resulting stock 

Nshshi /)()( 0
*

0
* ≡ )( 0

*
00 shsz −<

)( 01 zgs = , then move to phase II(st) in period 1.  In period 
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t=1,2,…, each player i plays  as long as 

 (that is, as long as the stock is equal to or above the level 

induced by ). If , with resulting stock , then 

move to phase II(s

Nshsh tti /)()( ** ≡

)( 1
*

11 −−− −≥ ttt shsz

*h )( 1
*

11 −−− −< ttt shsz )( 1−= tt zgs

t) in period t. 

    

Phase II(st)  Each player i plays action  defined below, resulting in escapement of 

.  If escapement in period t equals , then move back to Phase I.  

If escapement in period t does not equal , with resulting stock , then 

begin Phase II( ) in the following period t + 1.      

)( t
P
i sh

)( t
P
t sz )( t

P
t sz

)( t
P
t sz 1+ts

1+ts

 

Once a player over-harvests the resource, all players conduct phase II actions where everyone 

over-extracts the resource to a point where all players incur one-period negative profits.  Each 

player has an incentive to absorb losses in this period because then the resource stock is allowed 

to recover, players resume cooperation, and each player earns positive returns.  Not carrying out 

the punishment means that phase II will start again in the following period. These two parts of 

punishment (severe punishment, recovery) can be combined so that each player earns present 

value returns of zero (the worst perfect equilibrium payoff) evaluated from the beginning of the 

punishment phase.   

 We define the punishment strategy starting in period τ to be consistent with the worst 

perfect equilibrium starting from the punishment phase.  The lowest present value payoff 

(minmax value) for this game is 0.  Define  such that a player will earn 

zero present value profit by playing this action in period τ followed by playing h

Nshsh PP
i /)()( ττ ≡

i*(s) thereafter, 
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assuming that the other players play according to the equilibrium strategy:   

 ( ) 0))(()]([1

)(

=+−∫
−

ττδωω
τ

ττ

szgvdcp
N

P
s

shs P

,   (1)    

where , and )()( ττττ shssz PP −= ( )))(( ττ szgv P  is a player’s present value of profit from the 

cooperative solution starting with  amount of stock.  Under the assumptions on the 

cost function, c, there will exist a phase II harvest  that satisfies (1) for any stock level 

. The first term in equation (1) is equal to 

))(( ττ szg P

)( τshP

τs

∫∫
−−

−−−

−+−
)(]/)1[(

)()(]/)1[(

)]([1)]([1 ττ

ττ

τ

ττ

ωωωω
shNNs

shs

s

shNNs

P

PP

dcp
N

dcp
N

. 

This expression must be negative for equation (1) to be satisfied.  We will assume that the first 

term is nonpositive.  

Assumption 2.  for all 0)]([)(
)(]/)1[(

≤−≡ ∫
−−

τ

ττ

ωωτ

s

shNNs P

dcpsP ss >τ . 

When Assumption 2 holds, a player cannot deviate from the punishment strategy and earn 

positive profits during the harsh punishment phase.  We discuss when this condition is likely to 

hold in section 4.3.  

We find conditions under which no player is better off by any one-shot deviation from 

Phases I and II at any stock level.  Because each player's period-wise return is bounded from 

above and the discount rate is positive, the principle of optimality for discounted dynamic 

programming applies.  Therefore, in order to prove that  is subgame perfect, it is sufficient 

to show that any one-shot deviation cannot be payoff-improving for any player (Fudenberg and 

Tirole 1991). Because this is a dynamic game, we need to verify that no player has an incentive 

*σ
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to deviate from the prescribed strategy in any phase and under any possible stock level.3   

Given stock s, each player who follows cooperation in Phase I earns v(s).  If player i 

deviates from hi*(s), then the maximum the player can obtain is (given zero continuation payoff 

upon detection of cheating) 

∫ −−
≠

≥−≥ ∑
−

+∑
=≡

≠

s

hshs
iij j

i

hiiih iij jii

dcp
hsh

h
sshhrs

)(*0

*

0 *
)]([

)(
max)),(,(max)( ωωπ , 

where .   ))(,),(),(,),(()( **
1

*
1

*
1

* shshshshsh Niii KK +−− =

We now show that  is a subgame perfect equilibrium under certain conditions.  

Under Assumptions 1 and 2, the following condition is sufficient to show that  is subgame 

perfect.   

*σ

*σ

 

Assumption 3. )()( KKv π≥ , where K is the carrying capacity of the renewable resource.  

 

Assumption 3 states that the present value payoffs from following cooperative strategy must be 

greater than or equal to the maximum one period deviation payoffs when stock at the beginning 

of the period equals the carrying capacity, K.  In what follows we show that no player can gain 

by deviating in phase I given any current stock level, when Assumption 3 holds.  Then we show 

that no player can gain by deviating in phase II given any stock level. 

 

4.2 Sustaining cooperation in phase I 

We first show that no player can gain by deviating in phase I at all initial stock levels, ],0( Ks∈ .  

Beginning with stock s, each player earns  by playing .  If player i deviates in phase I, )(sv *σ

                                                  
3 See Dutta (1995a, b) and Polasky et al. (2006) for a similar analysis in a dynamic game context. 
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then the player earns at most )(sπ  in the present period.  Starting in phase II, player i earns 

present value payoffs of 0.  Hence, player i has no incentive to deviate in phase I if the 

following condition holds: 

)()( ssv π≥  for all s.   (2) 

The following three lemmas will show that )()( KKv π≥  is sufficient for the above inequality 

to hold.  

Let  be the harvest that maximizes the payoff upon deviation when stock size is s 

where the other players choose .  Lemma 1 characterizes . 

)(shD

)(* sh i− )(shD

Lemma 1. The optimal deviation  satisfies  )(shD

⎪
⎩

⎪
⎨

⎧

∈−∑−>
∈−∑−=
∈=

≠

≠

].*,()(
*],,()(
],,0(0

)(
*

*

Kzsifsshs
zssifsshs
ssif

sh

ij j

ij j
D  

See the Appendix for the proof.  Lemma 1 states that the optimal deviation in period t given 

ss >  is to extract the resource to a point at or below s.  The intuition for the result is that at s  

the unit rent is zero.  With further extraction, the total return decreases but the player’s share of 

total returns increases.  If other players are harvesting, it is therefore optimal for a deviator to 

harvest so that the resulting resource stock is less than s .  Lemma 1 implies the following 

about the slopes of π  and . v

 

Lemma 2. )(')(' svs >π  for all . ),[ * Kzs∈

See the Appendix for the proof.  Lemma 2 implies that π  decreases faster than  as stock 

decreases from K to some level .  This implies that 

v

*zs ≥ )()( ssv π≥  for all  if ),[ * Kzs∈
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)()( KKv π≥ .   

For )()( KKv π≥  to imply inequality (2), it remains to show that )()( ssv π≥  for all 

),( *zss ∈  whenever .  Lemma 3 addresses this last point.  )()( ** zzv π≥

 

Lemma 3. 0)('')('' <− ssv π  holds for any ),( *zss∈ .   

See the Appendix for the proof.   

 

Lemma 4. If )()( KKv π≥ , then )()( ssv π≥  for all ),[ Kss∈ . 

Proof.  It follows from Lemma 3, )(')(' ssv π>  and  that there exists unique )(')(' ** zzv π<

),(ˆ *zss∈  such that  

 (i) )ˆ(')ˆ(' svs =π , 

(ii) )(')(' svs >π  if  and *ˆ zss ≤<

(iii) )(')(' svs <π  if sss ˆ<≤ . 

Together with the fact that )()( ssv π> , the assumption that )()( KKv π≥ , and Lemma 2, we 

conclude that )()( ssv π≥  for all Ks ≤ .  ▄ 

Since, )()( ssv π≥  for all s, no player would find it profitable to deviate from Phase I.  

Figure 1 describes an example where )()( KKv π≥  holds.  The figure is based on a 

unit cost function  and a logistic growth function ssc /1)( = )/1()( Ksrsssg −+=  where r <1 

is the intrinsic growth rate of the resource.  As in Lemma 4, )()( KKv π≥  implies )()( ssv π≥  

for all 0 < . Ks ≤

 

[Figure 1] 

- 14 - 



 

4.3 Supporting cooperation in phase II 

Now we show that players cannot gain by deviating in phase II(s) for any post-deviation stock 

level s.  

Lemma 5. Under Assumption 2, no player has an incentive to deviate in phase II(s) for all s. 

Proof.  By following the equilibrium strategy in Phase II(s), a player earns 0 present value 

returns.  In the first period of phase II(s), the maximum payoff player i can earn upon deviation 

is given by 

∫
∑

−
∑+

≠
−−≠

≥

s

shhsij
P
ji

i

h
ij

P
ji

i

dcp
shh

h

)(
0

)]([
)(

max ωω . 

Under Assumption 2,  for all 0)]([
)(

≤
∑

−∫
≠

−

s

shs
ij

P
j

dcp ωω ss >  (and is certainly negative for ss < ).  

Therefore, there is no positive hi that can generate a positive return when other players play 

according to the punishment strategy: .  A deviation against the punishment 

triggers the start of a new punishment phase in which all players earn present value profits of 

zero.  Therefore, there is no profitable deviation in the severe punishment phase (the period 

following a defection from the cooperative strategy).  If there is no deviation in the first period 

of phase II(s), players then revert back to phase I, for which we have already demonstrated that 

no profitable deviations exist.  Hence, under Assumption 2 (

ijhh p
jj ≠= for  

0)( ≤sP  for all ss > ), there are no 

profitable unilateral deviations for any level of stock.  ▄   

Assumption 2 is likely to hold when N is not too small or growth of the stock is not too large.  

Because the optimal deviation drives escapement below s, as long as stock growth is not too fast, 

stock may be either lower than s or else not far above.  With large N, any one player’s share of 
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harvest is small making it unlikely that even if this player harvests nothing that escapement will 

be above s.     

 

4.4 Summary  

Lemmas 1-5 imply that there is no profitable deviation against strategy s* in either phase I or 

phase II.  We summarize the previous analysis in the following proposition.   

 

Proposition 1. Under Assumptions 1, 2, and 3,  is a subgame perfect equilibrium and 

supports a cooperative (first best) outcome. 

*σ

 

5. Numerical Illustration 

We use a numerical example to illustrate the results of the previous section.  We assume a unit 

cost function  and a logistic growth function ssc /1)( = )/1()( Ksrsssg −+=  where r <1.  

We describe when the sufficient conditions for Proposition 1 hold.   

Figure 2 shows the combinations for the number of players, N, and the discount factor, δ, 

for which Assumption 3 and Assumption 2 hold.  Assumption 3 states that the present value of 

the cooperative strategy exceeds the value of deviation for a player when the stock level begins 

at the unexploited carrying capacity level of stock, K.  In the figure, any combination of N and δ 

above (below) the line with square markers satisfies (does not satisfy) Assumption 3. 

Assumption 2 states that a player cannot earn positive profits during the punishment phase 

( ).  Any combination of N and δ above (below) the line with triangle markers satisfies 

(does not satisfy) Assumption 2.  For N ≥ 4, Assumption 3 is the more binding constraint (i.e., 

holds for a smaller range of discount factors). As shown in the figure, Assumption 3 holds for a 

0)( ≤sP
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smaller range of discount factors as N grows. In other words, it becomes more difficult to support 

cooperation as N grows.  This is the standard finding in the literature.  On the other hand, for 

small N, (N = 3 in the case shown in Figure 2), Assumption 2 is the more binding constraint.  

Because Assumption 2 holds for a wider range of values of discount factors as N gets larger, it 

may be possible to support cooperation as a subgame perfect equilibrium outcome for a larger N 

even though it is not possible to do so for smaller N.  This counter-intuitive result may occur 

because having more players makes it easier to ensure that players cannot deviate against the 

punishment strategy, which is necessary to ensure that the strategies constitute a subgame perfect 

equilibrium.  

Figure 3 draws the value of function  defined in Assumption 2 given optimal 

phase-I deviations.  This value must be nonpositive in order for the phase-II strategy to be a 

best response for each player.  With δ=0.9, Assumption 2 holds with N=4 but not with N=3. 

)(sP

 

[Figure 2, Figure 3] 

 

The implication is that the range of potential punishments increases when group size increases 

from 3 to 4.  This increase in N reduces the degree to which any one individual must increase 

harvest to inflict the punishment, which tends to lower the cost associated with following 

through with the punishment.  As such, larger punishments become credible, which tends to 

make cooperation easier to support.  But increases in group size raise the potential gains from 

defection: as N grows, each player is accorded a smaller share of the cooperative pie, which 

increases the potential one-time gain from defection.  Our simulation results indicate that, for 

the particular example we analyze, this effect becomes more important than the enhanced 
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credibility of punishments for values of N at or above 4.  On balance, we see a non-monotonic 

effect of group size upon cooperative tendencies.  It is interesting to compare this result to the 

findings in Mason and Phillips (1997).  In experiments based on a common-property resource 

with groups of 2, 3, 4 and 5 players, they found the most cooperative behavior occurred with an 

intermediate group size of 3, rather than at the lowest group size (2) or highest group size (5).   

For a smaller intrinsic resource growth rate r, Assumption 2 holds with lower discount 

factors but Assumption 3 holds with only higher discount factors.  In Polasky et al. (2006) with 

observable actions, an increase in resource growth rate was favorable to supporting a cooperative 

outcome.  With unobservable actions, players have a stronger incentive to deviate from phase II 

when the resource grows faster.  

If Assumption 2 does not hold and  for some stock levels, then each player 

may be better off by deviating in phase II of .  In this case, the worst perfect equilibrium 

payoff will be positive.  Hence, by deviating in phase I a player can receive a positive one-shot 

return as well as positive present-value returns starting from the next period.  Phase II must be 

redefined so that the payoffs upon deviation in phase II is lower than the positive worst perfect 

equilibrium payoff w>0.  The condition for phase I then becomes 

0)( >sP

*σ

wssv δπ +≥ )()(  for all s. 

 

6.  Discussion 

We analyzed cooperation in common-property resource use in a discrete-time framework with 

non-linear stock dependent costs and imperfect monitoring of resource users’ harvests.  Given 

unobservable actions, punishment to deter over-harvesting involves symmetric punishment of all 

resource users.  This paper proposed a strategy profile with symmetric two-part punishment 

where, upon someone’s deviation from cooperation, every resource user over-harvests the 
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resource for one period, followed by reestablishment of cooperative harvesting.  This two-part 

punishment scheme can be designed so that players receive the worst perfect equilibrium payoffs 

following a defection.  We found conditions under which such a strategy is a subgame perfect 

equilibrium supporting cooperation. Unlike the case of observable actions (Polasky et al. 2006), 

cooperation is not necessarily supportable when the number of resource users is small, when the 

resource grows faster, or when the players have a larger discount factor.  

 When each player’s action is observable to others, then the players can apply a 

punishment specific to the player who deviated from cooperation.  In this case, the players who 

did not cheat can receive positive payoffs during the punishment phase, with only the player who 

did cheat subject to the worst perfect equilibrium payoffs.  Polasky et al. (2006) analyzes a 

continuous-time version of a dynamic game of common property resources with observable 

actions.  

The simple punishment strategy proposed in this paper, severe group punishment 

following a defection followed by forgiveness and a return to cooperation, has several attractive 

features.  First, as we have emphasized through the paper, such a strategy can be designed to 

generate the strongest possible punishment (worst perfect equilibrium), which gives the greatest 

possible deterrent to defection.   

Second, such a strategy is consistent with empirical evidence on how people behave in 

common property and public goods games.  In such situations, people appear to behave in a 

reciprocal manner, meaning that they are nice to those who cooperate but quite willing to inflict 

punishment on those who fail to be cooperative, even when such punishment is costly to 

themselves (Fehr and Gachter, 2000a, 2000b, 2002).  Ostrom (2000) summarizes typical behavior 

observed in common property and public goods games as players being “conditional cooperators” 

- 19 - 



and “willing punishers.” It seems likely that people who are supposed to cooperate in harvesting a 

common property resource would be willing to exact some revenge immediately following 

learning that someone in the community has cheated.  Whether they would go as far as we have 

posited in specifying the worst-perfect equilibrium strategy is questionable.  However, even 

lesser punishments, willingly inflicted immediately following cheating, may be sufficient in some 

circumstances to deter defection from the cooperative strategy.      

Finally, the two-part punishment strategy, unlike a simple single-part punishment strategy 

such as a simple trigger strategy like that used in Hannesson (1997), is relatively immune to 

renegotiation.  The only period in which payoffs are not on the Pareto frontier is the period 

immediately following a defection, when players probably are willing to inflict costly punishment.  

As long as the group “takes its medicine” by going through with the punishment, cooperation is 

reestablished and payoffs are once again on the Pareto frontier, and hence, not subject to 

renegotiation pressure.  In contrast, a simple single-part punishment strategy involves dooming 

players to suboptimal payoffs forever following a defection.  This fact raises questions about why 

players would not at some future time find in their best interests to forgive and forget, i.e., 

renegotiate to get back to the Pareto frontier.  But, of course, if they do so, this will call into 

question the deterrence value of the single-part punishment, which in turn may cause cooperation 

to fail.      

 In this paper, we assumed deterministic resource transitions and perfect monitoring of 

stock.  In fisheries, and other renewable resources, unexpected fluctuations in stock due to 

random environmental events are common as is imprecise measurement of stock levels 

(Roughgarden and Smith 1996; Sethi et al. 2005).  One can extend previous studies on repeated 

oligopoly game with random demand (Abreu et al. 1986; Green and Porter 1984) to the common 
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property resource situation with stochastic growth or imprecise measurement.  While analyzing 

an N-player model with uncertain stock would present formidable technical challenges, it is 

clearly an interesting direction for future work. 

 

 

Appendix 

Uniqueness of the optimal harvesting rule 

The first best outcome is given by a solution to the following problem. 
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the second-order derivative is negative: 
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which always holds because p>c(K)=1/K (and hence the expression inside the square bracket is 

positive).  

 

Proof of Lemma 1. 
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Clearly the optimal  is zero when the stock level is below )(shD s .  When *],( zss∈ , we 

have  for all 0)(* =shj ij ≠  and hence the above derivative is equal to zero when 
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where  and  maximizes the payoff upon deviation when stock size is 

s.  The second equality follows from the envelope theorem and 
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Proof of Lemma 3. 
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(the arguments of functions f and g are omitted).  The same argument holds for any ),( *zss∈  
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This figure 
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1.4r I 

Resource stock 

Figure 1 : Payoffs upon cooperation (v) and deviation ( n ) 

is based on an example with r=0.5, K=100,6=0.9, p=0.05, and N=4. In this case, 

= 20 and z*=5 1.3. Function v is the payoff upon cooperation in phase 1, and 

function n represents the maximum payoff upon deviation from phase I. 
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Number of players 

Figure 2: Tradeoff between Assumptions 2 and 3. 

This figure is based on an example with ~ 0 . 5 ,  K=100, andp=0.05. Assumption 3 holds in the 

area above the curve with square markers. Assumption 2 holds in the area above the curve with 

triangle markers. 



Stck size at which phase-I deviation occurs 

Figure 3: Assumption 2 holds with N=4, but not with N=3. 

This figure is based on an example with r=0.8, K=100,6=0.9, andp=0.05. 
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