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1. Introduction 

The modern theory of resource economics (Hotelling, 1931; Herfindahl, 1967), which traces its roots 

to Ricardo’s theory of the mine,1 has largely focused on the problem of one resource and a single 

demand. However, casual empirical observation suggests that different nonrenewable resources (e.g., 

oil, coal) and grades (e.g., crude oils from Saudi Arabia and Alaska) are being extracted 

simultaneously to satisfy distinct energy demands. For example, Table 1 shows the composition of 

global energy supply by sector and resource for a recent year (2000). Notice that crude oil and 

petroleum products are the fuels of choice in the transportation sector, coal in industry and natural gas 

in industrial and residential uses. Coal, nuclear, natural gas and hydroelectric energy supply the bulk 

of electricity, an intermediate good used mainly in the industrial and residential sectors. The single-

demand model does not adequately explain this simultaneity and specialization of resources in 

specific sectors.  

 

Not only are multiple nonrenewable resources being extracted simultaneously, but the pattern of 

resource substitution is induced by a host of economic factors (e.g., demand growth, the 

discovery of new reserves, and technological change) that may vary between sectors and between 

resources. A recent International Energy Agency (IEA) study of energy demand until 2020 

suggests that in the OECD countries, growth in consumption in the transport sector is entirely 

accounted for by oil, while in the residential, industry and electricity sectors, oil continues to lose 

market share to other fuels, especially natural gas (IEA 2000). In particular, natural gas, in recent 

years, has become competitive in the electricity sector because of the advent of combined cycle 

gas turbine technology. In the past, electricity was generated predominantly from coal, but new 

power plants today mostly use natural gas, except in countries with large indigenous reserves of 

                                                 
1 Chapter 3 in Ricardo (1912), first edition, 1817. 
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coal. This trend is significant enough that the IEA expects global energy supplies from natural gas 

to surpass that of coal around 2010. The shift from coal to natural gas is also evident in the 

industry and residential sectors. The transition from coal and oil to the cleaner natural gas and the 

switch from oil to coal in industry after the OPEC oil price shocks of the seventies suggests that 

correctly specified empirical models that study the evolution of long-run resource price 

movements need to allow for fuel switching within and between sectors. 2   

 

The class of models following from Hotelling and Herfindahl (1967), who extended Hotelling to 

multiple grades of a resource (still with a single demand), cannot explain this apparent 

specialization of resources in particular demands because in the single demand framework, 

different resources are indistinguishable from different grades of the same resource. Due to this 

restriction, empirical tests of resource prices based on the Hotelling theory may be mis-specified 

(see e.g., Halvorsen and Smith, 1991).3 In this paper, we extend the above class of Hotelling-

Hefindahl models to a general multiple demand framework that allows for specialization of 

resources and substitution across demands based on notions of absolute and comparative 

advantage. We show that this extension generates an equilibrium sequence of resource extraction 

                                                 
2 Another reason why a multiple (rather than a single) demand model may be a more appropriate 

framework for analysis is the significant difference in growth characteristics among sectors. For example, 

annual average growth in global demand in the electricity (2.8%) and transport sectors (2.4%) is markedly 

higher than that in other uses such as residential and industry (1.8%), according to IEA (2000).   

 

3 In his Richard T. Ely address to the American Economic Association, Arnold Harberger (1993) expressed the 

same sentiment when he suggested that resource economics is a prominent example of economic theory failing 

to live up to the demands of its practitioners. The gap between theory and practice can be partially closed by 

developing a theory of multiple resources that are imperfect substitutes in meeting various resource demands. 
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and energy prices over time that is quite distinct from those derived from standard Hotelling 

theory.  

 

There are several papers that have extended Hotelling to multiple resources and demands, 

beginning with Herfindahl (1967) as noted earlier, who extended the Hotelling model to m 

resources and a single demand. Kemp and Long (1980), Lewis (1982), and Amigues et al. (1998) 

have generalized the basic m x 1 model by developing sufficient conditions under which 

Herfindahl’s “least cost first” principle (the ordering of resource extraction by their unit cost) 

holds and conditions under which it may not hold.  

 

Nordhaus (1973, 1979) pioneered the extension to the m x n (m resources and n demands) case in 

an applied study concerning the long-run tendency of energy prices. Chakravorty, Roumasset and 

Tse (1997) generalized and applied the Nordhaus framework to examine the effect of exogenous 

changes in the price of the backstop technology on fossil fuel extraction and carbon emissions 

over time. These applied studies do not develop the analytics of the m x n model. Chakravorty 

and Krulce (1994) provided a theoretical treatment of a 2 x 2 case (two resources and two 

demands) when one resource has absolute advantage over the other. However, as will  

become clear in this paper, their characterization of the 2 x 2 model is a special case.4 The 

objective of the present paper is to develop the general theory for the m x n model and then to 

completely characterize the 2 x 2 case.  

                                                 
4 They developed a 2 x 2 model in an infinite horizon framework where one resource (oil) has absolute 

advantage over the other in both demands. They showed that under these specific conditions, it will always 

be the case that a more expensive resource will be used for a finite time interval even though the cheaper 

resource is not exhausted, violating the well known “least cost first” principle proposed by Herfindahl. The 

objective of their paper was to show that this principle need not hold in a multiple demand, partial 
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The m x n framework affords an analytical distinction between resources and resource grades.  

We assume that there is a constant extraction cost for each grade but that different grades of the 

same resource may have different extraction costs.  We follow Nordhaus in assuming that energy 

demands in different sectors are independent.5 Solutions to an infinite horizon maximization 

problem yield equilibrium relationships for a given resource in a given demand in terms of the 

scarcity rent and cost characteristics of the resource.6 

 

We show that patterns of resource use can be characterized by stages according to which 

resources are used in what demands. We exploit Ricardian notions of absolute and comparative 

advantage in characterizing dynamic patterns of resource specialization. For example, if one 

                                                                                                                                                 
equilibrium framework. However, they did not proceed to develop the full implications of the multiple 

demand framework. 

5 This assumption of independence is supported by the fact that seasonal shocks such as the effect of 

summer driving on demand for transportation energy or a cold winter on residential energy demand tend to 

be sector-specific. 

6 Gaudet, Moreaux and Salant (2001) have examined a somewhat analogous general problem in which 

solid wastes are transported from urban centers to spatially distributed landfills. In their model, landfill 

capacity is exhaustible, and landfills are differentiated by transportation costs from each city. The landfill 

model is similar to ours in that transportation costs from cities to landfills can be thought of as conversion 

costs of resources to demands. However, resources are differentiable by class (oil, coal) and by grade 

(different grades of oil) while landfills are homogenous except for their location. While Gaudet et al. focus 

on the role of set up costs, we characterize patterns of optimal resource use according to principles of 

absolute and comparative advantage of a resource. Thus their work although in a spatial urban economics 

setting, may be thought of as a special case of our model in which each resource is of a different class. In 
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resource has a Ricardian absolute advantage over all other resources and is sufficiently abundant, 

it will be used exclusively for all end uses in the first stage. However, when each resource has an 

absolute advantage in some demand in a m x m model, a resource can never supply all demands, 

however abundant it may be. A strictly inferior resource will be used in all end uses in the final 

stage, regardless of its initial abundance. The two-resource two-demand case is completely 

characterized under conditions in which one resource has an absolute advantage in both uses, and 

when both resources have absolute advantage in some demand.  

 

Our results suggest that absolute advantage leads to dynamic specialization while comparative 

advantage results in intersectoral specialization. A resource that is abundant and has absolute 

advantage in all demands may be extracted for a demand even though it does not have 

comparative advantage in that use. However if each resource has absolute advantage in a given 

demand, then specialization is likely to occur on the basis of comparative advantage. Ricardian 

comparative advantage thus provides a basis for developing the dynamic Ricardian/Hotelling 

theory of resource rents.   

 

We show that taxes on a resource or on a sector (e.g., transportation) in the multiple demand 

model may have effects that are quite different than in the standard Hotelling model, which only 

predicts lower resource use over time. For example, a tax on coal may lead to both sectors 

switching to oil, while a tax on the transportation sector may lead to both sectors using oil, so that 

aggregate oil consumption may increase. A resource and sector-specific tax (such as a gasoline 

tax) may lead to a complete switch in resource use between sectors. That is, if oil was being used 

for transportation and coal for electricity ex-ante, coal would be used for transportation and oil for 

                                                                                                                                                 
later work it may be useful to develop a general model with both resource-independent transportation costs 

and demand-specific conversion costs. 
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electricity after the tax. Finally, predictions on energy price paths can be obtained directly from 

the sum of extraction plus conversion costs of resources. In the case of “clean” oil and “dirty” 

coal, we show that sectoral energy price differentials must decline over time, in sharp contrast to 

standard Hotelling theory, which predicts prices in both sectors to increase at the rate of discount.    

 

Section 2 develops the general m x n Hotelling model. Section 3 characterizes the 2 x 2 case. 

Section 4 concludes the paper. 

 

2. The m x n Model  

Consider a finite set of resources R (e.g. various grades of oil, coal, natural gas, etc.) and a finite 

set of uses for these resources defined by the set U (such as electricity, heating, transportation, 

etc.). The available stock of resource i � R, assumed known, is Qi(t0) > 0 which can be extracted 

at a constant unit cost of ci  � 0. Derived demand for energy in use j � U is a strictly positive, 

bounded, continuous, strictly decreasing function of price, Dj(p) with �
∞

∞<
0

.dp)p(D j   This last 

restriction implies a finite consumer surplus and is useful in guaranteeing a solution to the 

problem. Energy for the same use generated from different resources is assumed to be identical 

and the differences between resources subsumed in conversion costs. For example, coal can either 

be liquefied and used to produce a gasoline substitute, or car engines can be designed to run on 

coal, whichever is cheaper. The conversion cost of coal for use in transportation is then derived 

from the lesser of these costs. Conversion costs are resource and demand-specific such that there 

is a vector mapping from each resource to the set of demands. They are denoted by vij � 0, which 

is the cost of converting a unit of resource i to use j. Energy losses, such as frictional, heat or 

handling losses in the conversion process, are assumed to be incorporated into the cost of 
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conversion and already netted out of the resource endowments.7  The demand relationship is in 

terms of “delivered” energy units. We define the net cost of supplying resource i to demand j as 

wij � ci + vij.  

 

The social planner chooses the quantity of each resource supplied to each demand. We denote by 

qij(t) the quantity of resource i supplied to demand j at time t. The problem is to determine the 

resource allocation that maximizes the present value of net social benefit. Given a discount rate 

r>0, this can be posed as the optimal control problem: choose qij(t) for i � R and j � U to 

maximize 

 �� ���
∈ ∈ ∈

−
∞

− −
Uj

Z

Ri Uj
ijijj

t

rt dt)]t(qwdx)x(D[e
0

1

0

      (1) 

subject to 

 

qij(t) � 0, Qi(t) � 0 for i � R and j � U, and      (2) 

 

�
∈

=
U j 

ij (t)q -  (t)Q
i
�  for i � R,        (3) 

 

where �
∈

=
Ri

ij )t(qZ , aggregate energy consumption in demand j at time t. The state variable Qi(t) is 

the residual stock of resource i over time. The two terms in (1) denote the standard sum of 

consumer plus producer surplus. The current value Hamiltonian for the above problem is given 

by  

                                                 
7 In empirical applications, efficiency losses can be made explicit (see e.g. Nordhaus, 1979, Chakravorty et 

al., 1997). 
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 ���� ��
∈∈∈ ∈ ∈

− −−=
Uj

ij
Ri

i
Uj

Z

Ri Uj
ijijj )t(q)t(dt)]t(qwdx)x(DH λ

0

1      

  

where �i(t) � 0 has the standard interpretation as the scarcity rent of resource i. The solution is 

defined in terms of optimal price paths as functions of time. Let the price of the resource input for 

demand j be ).)t(q(D)t(p
Ri

ijjj �
∈

−≡ 1  The necessary conditions for a solution are: 

�
∈

=
U j 

(t)q -  (t)Q
iji

�  for i � R ,        (4) 

R  i for)t(r)t( ii
∈= λλ� ,        (5) 

 

pj(t) �  wij + �i(t) (if < then qij(t)=0)   for i � R and j � U,  and    (6) 

 

0=−

∞→
)t(Q)t(elim ii

rt

t
λ  for i � R .       (7) 

 

It is straightforward to show that a solution to the above program exists: 

 

Proposition 1. There exists a unique optimal solution to program (1)-(3) and the necessary 

conditions (4)-(7) are also sufficient.  

Proof: See Appendix 1.  

 

Before proceeding, we prove the intuitive but useful result that all resources approach exhaustion 

in the limit.  

 

Lemma 1. 0=
∞→

)t(Qlim i
t

 for i � R.  
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Proof. Pick a � R and suppose that �a(t0)=0. From (5), �a(t)=0 and so from (6), pj(t)� waj. Since 

demand is positive and downward sloping, for some j � U, 

�
=

=≤<
m

i
ijjjajj ).t(q))t(p(D)w(D

1

0  Thus ��
∞

=

∞=
0

1t

m

i
ij dt)t(q  so there exists b � R such that 

�
∞

∞=
0t

bj .dt)t(q  From (4), �
∈

−≤−=
Uj

bjbjb )t(q)t(q)t(Q�  and so eventually Qb(t) will become 

negative which contradicts (2). Thus the supposition is false and so �a(t0) > 0. Combining (5) and 

(7) yields )t(Qlim)t()t(Qe)t(elim)t(Q)t(elim a
t

aa
rt

a
rt

t
aa

rt

t ∞→

−

∞→

−

∞→
=== 000 λλλ  which since 

�a(t0) > 0 implies that .)t(Qlim a
t

0=
∞→

 Since a was arbitrary, then 0=
∞→

)t(Qlim i
t

for i � R . � 

 

Hotelling Scarcity Rents in the Heterogenous Demand Framework 

The necessary conditions (4) through (7) can be easily interpreted. Condition (4) is just a 

restatement of (3). Condition (5) is the familiar Hotelling equation which suggests that scarcity 

rents rise over time at the rate of discount. Condition (6) is the basic Kuhn-Tucker condition 

governing resource allocation in the multiple demand model that says that the price in any given 

demand cannot exceed the net cost of any resource in that demand. This inequality implies that 

the resource that is available at the lowest price (net cost plus scarcity rent) is always used for 

each demand, as proved by the following proposition: 

 

Proposition 2. The price (net cost plus scarcity rent) of a resource that is supplied for a given 

demand is no more than that of any alternative resource. 

Proof: Suppose that qaj(t) > 0 for some a � R, j � U and t � (t0,�). From (6) waj+ �a(t) = pj(t) � 

wij+ �i(t) for i � R . � 

 

Solving (5) produces the familiar Hotelling equation 
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rt
ii e)t()t( 0λλ =  for i � R        (8) 

 

which states that the scarcity rent rises at the rate of discount. Condition (8) also implies that the 

scarcity rents of all resources are ordered. Based on this ordering, we write �a < �b to mean �a(t) < 

�b(t) for all t � [t0,�). It may also be the case that the scarcity rents of two resources are the same. 

As shown by the following proposition, this must be the case if two resources ever 

simultaneously supply the same demand.  

 

Proposition 3. Two resources simultaneously supplying the same demand have the same scarcity 

rent and net cost for that demand. 

Proof. Let qaj(t) > 0 and qbj(t) > 0 for some a,b � R, j � U, and t � I where I ),t( ∞⊂ 0 is an open 

interval. From (6),  

 

)t(w)t(p)t(w bbjjaaj λλ +==+  for t � I .      (9) 

 

Differentiating, we get )t()t( ba λλ �� =  for t � I. From (5) and (8), �a=�b. That is, the scarcity 

rents are the same. Combining with (9) yields waj = wbj. That is, the net costs are equal. � 

 

A corollary to the above result is: 

 

Proposition 4. The prices of two demands that are simultaneously supplied by the same resource 

must grow at the same rate.   
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Proof: Let resource i supply both demands j and k over an interval I ),t( ∞⊂ 0 .Then 

)t(w)t(p),t(w)t(p iikkiijj λλ +=+= which implies that .It)t(p)t()t(p kij ∈∀== ��� λ � 

 

Ricardian Absolute Advantage 

In the standard Hotelling/Herfindahl model with a single demand, resource rents are ordered by 

grade: the resource with the highest grade has the highest scarcity rent. With heterogenous 

demand, the ordering of resource rents is more problematic since there is not necessarily an 

ordering of costs among multiple resources. One resource may be cheaper for one demand and 

more costly for another demand when compared to other resources. The following definitions 

relate three different types of cost orderings that may occur: 

 

Definition. Resource a � R has an absolute advantage relative to resource b � R in demand j � 

U if waj < wbj , some j � U. 

 

Definition. Resource a � R dominates resource b � R, if it has an absolute advantage in all 

demands, i.e., if waj < wbj , all j � U. 

 

Definition. Resource a � R  is universally dominant if it dominates all other resources, i.e., if waj 

< wij, all i � R, j � U. 

 

Absolute advantage implies lower net cost relative to another resource in a single demand. A 

resource that dominates another, has Ricardian absolute advantage relative to this other resource 

in all demands. A resource that universally dominates has absolute advantage, i.e., is strictly 

cheaper, relative to all resources and for all demands. The next results generalize the principle of 

cost-ordered scarcity rents. 
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Proposition 5. Dominant resources have a higher scarcity rent. 

Proof: Let waj < wbj for resources a,b � R and all demands j � U. Suppose that �a �  �b. From (6), 

pj(t) �  waj + �a(t) < wbj + �b(t) for all t � (t0,�). Thus qbj(t)=0 for all t � (t0,�) and j � U; resource 

b is never extracted for any demand. Since this contradicts the Lemma, the supposition is false 

and thus �a > �b. � 

 

By the above proposition, a resource that universally dominates (if one exists) will have the 

highest scarcity rent, since its scarcity rent will be higher than that of all other resources. Note 

that it is not possible to order resources with only absolute advantage by their scarcity rents. This 

is because resource a (b) may have absolute advantage over resource b (a) in demand j (k), so 

that no resource is dominant. 

 

Resources and Grades 

The multiple-demand framework allows for a clear distinction between individual resources and 

grades of a single resource: 

 

Definition. Resource a,b � R are of the same resource class if wbj – waj = d for all j � U and some 

constant d. Furthermore, if d > 0 (d = 0, d < 0) then resource a is a higher grade (same grade, 

lower grade) of the resource class than resource b. 

 

This formal definition of resource class corresponds roughly to what is meant in common 

parlance by distinguishing between resources of different types, e.g. “coal”, “oil”, “natural gas,” 

etc. The difference between resources within any class is only cost – a higher-grade resource has 

the same cost advantage regardless of demand. This classification is based on the economic 

properties of the resource, not its chemical properties. Two resources with similar chemical 
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compositions, e.g. light vs heavy crude oil, may be in different resource classes, depending on 

whether their cost advantage varies across uses. In the Herfindahl case of one demand, all 

resources are in the same resource class, i.e. there is no distinction between different resources 

and different grades of the same resource.  

 

Proposition 6. Higher-grade resources have a larger scarcity rent. 

Proof: If resource a � R is a higher grade of the same resource class than resource b � R, then by 

definition, wbj – waj = d > 0 for j � U which implies that waj < wbj for j � U. From Proposition 5, 

resource a has a larger scarcity rent than resource b. � 

 

That is, a higher grade of the same resource class dominates the grade to which it is being 

compared, and the highest grade dominates all other grades. With only one resource class but 

multiple demands, the highest grade is universally dominant. With homogenous (one) demand, 

the Herfindahl principle states that resources are extracted sequentially, in order of cost. The 

following two propositions generalize this principle to show that the use of resources within each 

demand is always in order of absolute advantage and that resources are extracted by decreasing 

grade. 

 

Proposition 7. Resources are supplied for a given demand in order of absolute advantage. 

Proof. We show that if a resource is supplied for a given demand then a lower net cost resource 

will not subsequently be supplied for that demand. Thus by definition, resources supplied for a 

given demand must be in order of absolute advantage. Let qaj(t1) > 0 and waj > wbj for resources 

a,b � R and demand j � U at time t1 � (t0,�). From (6),  

 

)t(w)t(p)t(w bbjjaaj 111 λλ +≤=+        (10) 
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which since waj > wbj implies that �a < �b. From (5), ba λλ �� <  and so the left hand side of (10) 

increases at a slower rate than the right hand side. Thus )t(w)t(w bbjaaj λλ +<+ for all t � 

(t1,�).Then from (6), pj(t) �  �a(t) + waj < �b(t) + wbj for all t � (t1,�) and so qbj(t)=0 for all t � 

(t1,�). � 

 

Proposition 7 does not say that all resources will be supplied for each demand but that of those 

resources that are supplied, their use will be in strict order of absolute advantage. In this sense, 

the Herfindahl Principle of “least cost first” is preserved within each demand. In the special case 

of a single demand, Proposition 7 reduces to the Herfindahl principle. 

 

Proposition 8. Resources of the same resource class are extracted in order of decreasing grade. 

Proof. We show that if one resource is being extracted, then a higher grade of the same resource 

will not subsequently be extracted. Thus resources within the same class are extracted in order of 

decreasing grade. Let 01 >)t(Qa
� and 01 =)t(Qb

� for resources a,b � R at time t1 � (t0,�) where 

resource b is a higher grade of the same resource class as resource a. By the last inequality, from 

(4) there exists c � U such that qac(t1) > 0. From (6), 

                

)t(w)t(p)t(w bbccaac 111 λλ +≤=+                                                           (11) 

 

which since wbc < wac from the definition of higher grade, implies that �a(t1) <  �b(t1). From (5), 

ba λλ �� < , the left hand side of (11) increases at a slower rate than the right hand side, and so wac  

+  �a(t) < wbc +  �b(t)  for all t  �  (t1,�). Since wbj – waj is constant for all j � U (from the 

definition of resource class), this implies that waj  +  �a(t) < wbj +  �b(t)  for all t  �  (t1,�) and j � 
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U. Combining with (6) yields pj(t) � waj  +  �a(t) < wbj +  �b(t) which implies that qbj(t)=0 for all t 

�  (t1, ,�) and j �  U. From (4), 0=−= �
∈Uj

bjb )t(q)t(Q�  for all t � (t1, ,�). � 

 

If there is a single resource class, all demands can be aggregated into one composite demand and 

Proposition 8 reduces to the Herfindahl Principle. Since the proposition demonstrates that 

deposits within a resource class will be extracted in strict order of grade, we can aggregate 

resource grades and consider the resulting composite resource as having an extraction cost 

function that increases with cumulative extraction. This provides a microeconomic foundation for 

resources with rising, cumulative extraction cost functions, used frequently in the literature (e.g, 

Heal, 1976). 

 

Since demand is positive at all prices, there will always be a resource available for each demand. 

The following provides a condition under which all resources except one will be exhausted. 

 

Proposition 9. A resource that is strictly inferior, i.e. dominated by all other resources, will 

eventually be used exclusively for all demands. 

Proof. Let resource a � R be strictly inferior. From Proposition 5, �a < �i for all i � R – {a}. Since 

scarcity rents rise exponentially, there exists a time ta � (t0,�) such that waj + �a(t) <  wij + �i(t) 

for all i �  R – {a}, j � U, t � (ta,�). From (6), qij(t)=0 for all i � R – {a}, t � (ta,�) and so qaj(t) > 

0 for j � U, t � (ta,�). � 

 

Given that scarcity rents are ordered, a strictly inferior resource will have the lowest scarcity rent 

in all stages. A strictly inferior resource that is unlimited in quantity thus corresponds to the 

notion of “backstop resource” in the resource economics literature. At the other end of the 

spectrum, it is natural to ask if a single resource could be used exclusively for all demands at time 
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t0. The next proposition demonstrates that if there is a resource that is relatively cheap and 

plentiful, it will be used exclusively, i.e., for all demands at the beginning of the extraction 

program.8 

 

Proposition 10. A resource a � R that is universally dominant will be used exclusively at time t0 if 

� �
∈

+

+

<−
Uj

ws

ws
aajj

ajj

aj

)t(rQdp)wp/()p(D
0

0  where 

s0 = min {wij - waj | i � R - {a}, j � U}, and  

sj = max {wij - waj | i � R, j � U. 

 

Proof.  See Appendix 1.  

 

On the other hand, if each resource has absolute advantage in one demand, then no resource can 

supply all demands in any stage. This is shown below for the case of an equal number of 

resources and demands (i.e., m=n), sometimes referred to as “even” models.9   

 

Proposition 11. When each resource has absolute advantage in an “even” model, no resource 

can supply all demands. 

Proof: Without loss of generality, re-label all demands from 1,..,m so that resource i has absolute 

advantage in demand i, i=1,..,m, that is, .ij,ww jiii ≠∀<  Let resource 1 be used for all demands, 

for some t � I where I ),t( ∞⊂ 0 . Then define { }.\Uj),t(p)t(p)t( jjjj
j 111 ∈−=φ  That is, 

                                                 
8 An intuitive explanation for this result is provided for the 2 x 2 case in section 3. 

9 The even-odd terminology follows extensions of Heckscher-Ohlin trade theory to higher dimensions. For 

an overview, see Bhagwati, et al., (1998). 
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j
j
1φ is the price differential between resource 1 and resource j in demand j. Since resource 1 is 

used for all demands in this interval, 0111 <−+−= )ww())t()t(()t( jjjjj
j λλφ . This implies 

that 11 ≠∀< j)t()t( jλλ since .ww jjj >1  By (5), this inequality holds over the entire time path. 

Also, resource 1 is used for all demands, so it is cheaper relative to any other resource k in 

demand j, i.e., .It)t(k
j ∈∀< 01φ Since resource 1 has the lowest shadow price, 

{ }.\Uj,Rk),,t[t))t()t((r)t()t()t( kkk
j 10 0111 ∈∈∞∈∀<−=−= λλλλφ ���  That is, resource 

1 will always be cheaper than other resources for every demand. No other resource will ever be 

used subsequently, contradicting Lemma 1. � 

 

The above proposition is independent of the stock sizes of the resources. That is, however 

abundant a resource may be, it will never be the exclusive supplier for all demands. As resources 

get exhausted, one resource may become universally dominant and thus become the exclusive 

supplier.  

 

Ricardian Comparative Advantage 

In the following, we develop notions of comparative advantage and show that this taxonomy 

plays an important part in characterizing the sequence of resource extraction. In particular, a 

resource with universal dominance and universal comparative advantage will always be used 

first. We thus generalize the Herfindahl notion to the case with multiple demands.  
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Definition. Resource a � R has a pairwise comparative advantage in use k over resource b � R if 

,wwww ajbjakbk −>− some j � {U \ k}.10   

 

Definition. Resource a � R has comparative advantage in use k over resource b � R if 

,wwww ajbjakbk −>− all j � {U \ k}.11 

 

Definition. Resource a � R has universal comparative advantage in use k if it has a comparative 

advantage over all other resources, i.e. if ,wwww ajijakik −>−  all j � {U \ k}, i � {R \ a}. 

 

These definitions parallel the notions of absolute advantage presented earlier. If oil has pairwise 

comparative advantage relative to coal in transportation, then the net cost differential between oil 

and coal in transportation exceeds the net cost differential in some other demand.12 Comparative 

                                                 
10 The last inequality implies that bkakbjaj wwww −<− . That is, the definition of pairwise comparative 

advantage is symmetric, i.e, resource b has a pairwise comparative advantage in use j over resource a.  

However it is easy to check that it is also transitive, i.e., if resource a has pairwise (k and j) comparative 

advantage in use k relative to resource b, and b has pairwise (k and j) comparative advantage in use k 

relative to resource c, then resource a has pairwise (k and j) comparative advantage in use k relative to 

resource a.  

11 Similar distinctions between the three types of comparative advantage may be useful in international 

trade theory as well. 

12 If distinct resources have absolute advantage in specific demands, it leads to pairwise comparative 

advantage. Suppose resource a (b) has absolute advantage over resource b (a) in demand j (k). Then waj < 

wbj and wbk < wak which upon subtracting inequalities yields wbk - wak < wbj - waj, implying that resource a 

(b) has pairwise comparative advantage relative to resource b (a) in use j (k).  From Proposition 12 below, 

no resource can be an exclusive supplier under pairwise comparative advantage. 
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advantage of oil in transportation, say relative to coal implies that the net cost differential 

between oil and coal is higher in transportation than in every other demand. Comparative 

advantage over another resource implies pairwise comparative advantage over all demands. 

Universal comparative advantage of oil in transportation implies that the net cost differential 

between oil and all other resources is higher in transportation than in every other demand. 

Universal comparative advantage in a given use implies comparative advantage relative to all 

other resources. This taxonomy allows us to develop criteria for ranking resources by their 

comparative advantage.  

 

The following result specifies that if two resources have pairwise comparative advantage, they 

cannot simultaneously be extracted for the uses wherein the other resource has the advantage. 

This result limits the set of solutions, as we will see in the 2 x 2 case. 

 

Proposition 12. If resources a and b have pairwise comparative advantage relative to one another 

in j and k respectively, then a cannot be used in k while b is used in j; a, b � R; j, k � U.  

Proof. Let qak(t) > 0, qbj(t) > 0 for t � I where I ),t( ∞⊂ 0 . By the definition of pairwise 

comparative advantage, wbk - wbj < wak - waj. Then from Proposition 2, 

bbkaakk w)t(w)t(p λλ +≤+=  and )t(w)t(w)t(p aajbbjj λλ +≤+= . Subtracting the 

inequalities yields )w(w)w(w ajaakabjbbkb +−+≥+−+ λλλλ  so that 

ajakbjbk wwww −≥− which is a contradiction. � 

 

Next we show that both universal dominance and universal comparative advantage are sufficient 

to ensure that a resource is used before any other resource:   
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Proposition 13. A resource with universal dominance and universal comparative advantage in 

demand k must be used exclusively in that demand.13  

Proof: Let resource a have universal dominance and universal comparative advantage in use k. 

Let another resource Rb ∈ supply demand k over an interval ),t[)t,t[I ∞⊂= 0211 . Then wak+ 

�a(t) = pk(t) �  wbk+ �b(t) 1It ∈∀  so that  0 < wbk - wak � �a(t) – �b(t), where the first inequality is 

from universal dominance of a in k. However, over another interval ),t()t,t[I ∞⊂= 2432 , 

resource a must be used for some demand, say j. Then pj(t)=waj+ �a(t) � wbj+ �b(t) 2It ∈∀ which 

implies that  �a(t) - �b(t) �  wbj - waj 2It ∈∀ . Since �a(t)� �b(t) from above, the shadow prices 

must diverge by (5), hence 0≥− )t()t( ba λλ ��  and by the definition of the intervals I1 and I2, 

}It)t()t({}It)t()t({ baba 21 ∈−≤∈− λλλλ . Consolidating, we get 

ajbjbabaakbk ww}It)t()t({}It)t()t({ww −≤∈−≤∈−≤− 21 λλλλ . This inequality 

must hold for any resource b and demand j, i.e., ,wwww ajijakik −≤− which contradicts the 

definition of universal comparative advantage of resource a in use k. �  

 

                                                 
13Our notion of pair-wise comparative advantage is equivalent to the definition of comparative advantage 

put forward by Gaudet, Moreaux and Salant (2001). Comparative advantage, in their model determines, 

given an arbitrary use profile, which city will switch first to a higher cost landfill site. A city (in our case, 

demand) may switch to a more costly site (in our analogy, use a more costly resource) if it has comparative 

advantage in that demand. However, their definition of comparative advantage focuses on resource 

switching and does not predict which resource will be used first. Our (stronger) definition of comparative 

advantage suggests that if a resource with universal dominance and universal comparative advantage exists, 

it is automatically picked as the exclusive supplier at the beginning of the planning horizon.  
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A resource with universal dominance and universal comparative advantage in demand k must be 

used exclusively in that demand at the beginning of the planning horizon. Universal dominance 

and universal comparative advantage are sufficient for the above result to hold. They establish a 

clear ordering of resource extraction across resource classes. 

 

The two definitions of absolute advantage – dominance and universal dominance – are equivalent 

when there are only two resources. In this case, all three definitions of comparative advantage are 

also equivalent. This is because, with two demands, if resource a has dominant comparative 

advantage in use k relative to resource b, the cost differential between resource a and b in demand 

k is higher than in all other demands. If the number of demands is only two, there is only one 

“other” demand. Thus a has universal comparative advantage over b in use k. The argument for 

the other equivalencies is similar.14 In the Herfindahl case when the number of demands is unity, 

the definitions of comparative advantage reduce to the following: 

 

Definition. Under one demand, resource a has universal comparative advantage if 

}.a\R{i,ww akik ∈>− 0  

That is, a resource has comparative advantage when its net cost is lower than that of all other 

resources. Then Proposition 13 reduces to the Herfindahl Principle, i.e., the resource with the 

lowest net cost must be used exclusively. Furthermore, the sequence of extraction must be 

according to the “least cost first” principle. Unlike in the one demand case (except when 

resources have equal net costs), a resource with universal comparative advantage may not exist 

under multiple demands.  

                                                 
14 In any two-resource model, comparative advantage and universal comparative advantage are equivalent. 

All three definitions are distinct in models with dimensionality m > 2, n >2. Precise results on their 

relationships in different dimensions can be explored in future work.  
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Absolute and Comparative Advantage: Polar Cases 

The role of absolute and comparative advantage in the general case may be illuminated by two 

polar extremes: (i) for each resource, conversion costs are the same across end uses (ii) each 

resource enjoys a symmetrical comparative advantage in each end use.  

 

For (i), with equal conversion costs across demands for each resource, we have 

UiRkjvv ikij ∈∈∀= ,, . Then ikikiijiij wvcvcw =+=+= , so that for any two resources a and b, 

Ukjwwvcvcvcvcww akbkakabkbajabjbajbj ∈∀−=+−+=+−+=− ,)()( , since ikij vv = . Hence 

by definition, all resources are of the same resource class. Let us re-label the resources in order of 

increasing net cost, i.e., mjjj w..ww <<< 21 . Then by Proposition 6, ... mλλλ >>> 21 By 

Proposition 8, resources will be extracted in order of decreasing “grade”, with resource 1 in the 

initial stage and m at the end. The sequence of extraction will follow the Herfindahl Principle, 

i.e., each resource will supply all demands exclusively, until it is exhausted and the next higher 

net cost resource is employed.  

  

For (ii), consider the m x m model, in which each resource has universal comparative advantage 

in a given demand. Suppose demands are identical and stocks of each resource are equal. Without 

loss of generality, the demands are re-labeled such that resource i has universal comparative 

advantage in demand i, { }.m,..,Ii 1=∈  Suppose ,w..www..ww
mmiiimm ===<===

21 212211  

where { } { } { }m\Ii,..,\Ii,\Ii m ∈∈∈ 21 21 . That is, the net costs of all resources are equal in their 

respective demands and higher (and equal) for all other demands. In this perfectly symmetrical 

world, since there is no distinction between resources except by comparative advantage, and 

demands are identical, ... mλλλ === 21  By Proposition 2, each resource will be used exclusively 
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in the demand in which it has comparative advantage. Because of perfect symmetry, each 

resource will be exhausted at infinity. To summarize, in the first polar extreme, resource use is 

determined entirely by absolute advantage; in the second, entirely by comparative advantage.  

More generally, resource use will reflect a trade-off between both forces.   

 

Comparative Dynamics 

In order to investigate the comparative dynamics properties of the m x n model, we can define the 

value function in (1)-(3) as  

�
∞

=
0

00
t

ii dt)t),t(Q(B))t(Q(V , where       (12) 

�� ��
∈ ∈ ∈

−− −=
Uj

Z

Ri Uj
ijijj

rt
i )]t(qwdx)x(D[e)t),t(Q(B

0

1
0      

  

represents the discounted benefits from extraction at any given instant of time t. To relate the 

change in resource scarcity rents to the change in the aggregate resource stocks, we need to 

establish the differentiability of the value function )t),t(Q(V i 0 . Benveniste and Scheinkman 

(1979) have shown that under fairly general conditions as in our case, the value function V(�) is 

once differentiable. In particular, we invoke their Corollary 1, where the optimal control is a 

piecewise continuous function of time. In our case, the control functions are discontinuous since 

there may exist intervals I such that qij(t)=0, t � I and I ),t( ∞⊂ 0 . By Proposition 7, and because 

we have only a finite number of demands and resources, there can only be a finite number of such 

intervals. At the switch points between these intervals, the state variables may not be 

differentiable and the control functions may be discontinuous. In Appendix 2, we check that (12) 

satisfies the assumptions of their Corollary 1. This gives the following result:   
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)t()t(Q/))t),t(Q(V iii 000 λ=∂∂ , 

 

which implies that the initial scarcity rent is the derivative of the optimal value function with 

respect to the initial stock of the resource. In another paper, under more general conditions, 

Benveniste and Scheinkman (1982) have shown that the value function is concave. That is, if 

)t(Q̂),t(Q ii 00 are two different initial stocks of any resource i, then 

00000 ≤−− ))t(ˆ)t()).((t(Q̂)t(Q( λλ , where )t(ˆ),t( 00 λλ represent the corresponding 

vector of scarcity rents at time t0. Thus if )t(Q)t(Q̂ ii 00 > , e.g., representing an exogenous 

increase in the initial stock of resource i, then )t()t(ˆ
ii 00 λλ ≥ , provided that all other stocks 

remain unchanged. We can then state the following result: 

 

Proposition 14. An exogenous increase in the initial stock of a resource causes a reduction in its 

scarcity rent. 

 

This implies that in the limit, if a given resource i is inexhaustible, 0
0

=
∞→

)t(lim i
)t(Qi

λ which 

yields .wlimw)t(plim iji
)t(Q

ijij
)t(Q ii

=+=
∞→∞→

λ
00

 If all other resources are limited in quantity, the ith 

resource is a backstop resource. In section 3, we examine the role of resource abundance for the 2 

x 2 case. 

 

3. Characterization of the 2 x 2 Case  

We now consider the simplest possible setting with multiple demands, that of two demands and 

two resources. In this case, dominance implies universal dominance and pairwise comparative 

advantage is equivalent to comparative and universal comparative advantage. Without loss of 
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generality, we assume that the demands are denoted by electricity and transportation, and the 

resources are oil and coal. There are only two possible cases to consider: (i) one resource is 

dominant, i.e., has absolute advantage in both demands and (ii) when each resource has absolute 

advantage, i.e, has absolute advantage in some demand. Again without loss of generality, we 

consider the following two cases: (i) oil is a dominant resource, and (ii) oil has absolute 

advantage in transportation and coal in electricity.15  

 

Oil is dominant 

We can simplify notation by letting wOE and wOT (wCE and wCT) denote net costs of oil (coal) to 

electricity and transportation, respectively. Note that dominance for oil implies that 

CEOE ww < and CTOT ww < . Define )ww()ww(k CEOEOTCT −+−= . Then oil has 

comparative advantage in transportation (electricity) if k > (<) 0. The following propositions 

provide sufficient conditions for oil to be used at the beginning for both uses, when it is 

dominant:  

 

Proposition 15. If oil is dominant and has comparative advantage in transportation, and the 

condition )t(rQdp
)w)t(p

)p(D
oO

w

w OT

T
CT

kCT

<
−�

−

 holds, then oil must be used for both uses at the 

beginning. In the second stage, oil is used for transportation and coal for electricity. In the third 

stage, coal is used for both uses. 

Proof. See Appendix 1. 

 

                                                 
15A similar example is used in Chakravorty and Krulce (1994), albeit under the stricter assumption that oil 

is the lower cost resource for both demands and has a comparative advantage in transportation.  
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Proposition 15 suggests that only oil will be used at the beginning if it is abundant, the discount 

rate is high, the net cost of coal in transportation is high (since demand is downward sloping), the 

net cost of oil in transportation is low, the demand for transportation is low, and k is low. Recall 

that the magnitude of k denotes the degree of comparative advantage of oil in transportation over 

coal in electricity. The higher the value of k, the less likely it is that oil will be used for electricity 

in the beginning stage. That is, comparative advantage of oil in transportation makes it less likely 

that oil will supply both demands in the initial stage. Note that in this stage, oil is used for 

electricity even though coal has comparative advantage in that demand. The effect of dominance 

is stronger than that of comparative advantage. The solution is shown in Fig.1. Only oil is used 

until time t1, followed by coal in electricity and oil in transportation until time t2, when oil is 

exhausted. In the third stage, the strictly inferior resource, coal supplies both demands. 

 

However, even if oil is dominant, i.e., has absolute advantage over coal in both demands, it may 

have comparative advantage in electricity, not in transportation. The following result shows that 

stage 2 will then be different. It is the mirror image of Proposition 15, so the proof is not given 

separately.  

 

Proposition 16. If oil is dominant and has comparative advantage in electricity, and the condition 

)t(rQdp
)w)t(p

)p(D
oO

w

w OE

E
CE

kCE

<
−�

−

 holds, then oil must be used for both uses at the beginning. In 

the second stage, oil is used for electricity and coal for transportation. In the third stage, coal is 

used for both uses. 

 

In this case .)ww()ww(k CEOEOTCT 0<−+−=  The solution is exactly as in Fig.1 except that 

in stage 2, it is oil that is now used for electricity and coal in transportation. Both solutions are 
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summarized in Table 2(a,b). A reversal is obtained in stage 2, and the sequence of extraction in 

this stage is strictly according to comparative advantage, as implied by Proposition 12. Since the 

solutions in Proposition 15 and 16 are unique, we get the following corollary: 

 

Corollary. When both resources are extracted simultaneously in a 2 x 2 model, resources must be 

extracted for the demand in which they have comparative advantage.   

 

Since the stages of resource use are determined according to the principle of least-shadow-price-

first, Fig.2 shows the solution described in Proposition 15 in terms of shadow price differences. 

The functions �E(t) and �T(t) denote the price of oil net of coal in electricity and transportation, 

respectively.16 When  �E(t) < 0, the price of oil is lower than that of coal; hence oil is used for 

electricity. When �E(t) > 0, coal becomes cheaper and substitutes for oil. As shown in the proof 

of Proposition 15, ).t()t( TE φφ >  When k=0, )t()t( TE φφ ≡ and the middle stage is 

eliminated. Oil is used exclusively at the beginning followed by coal at the end. The transition 

from oil to coal happens in both sectors simultaneously. Thus, the Herfindahl result of “least cost 

first” is obtained as a special case when oil has absolute advantage in transportation and coal in 

electricity, but no resource has comparative advantage. The cost advantage of oil and coal in their 

respective demands cancel each other.17 The following proposition relates the length of the 

second stage to the magnitude of comparative advantage, denoted by k: 

 

                                                 
16 That is, )t(p)t(p)t( CEOEE −=φ  and )t(p)t(p)t( CTOTT −=φ . 

17 The model of Chakravorty and Krulce (1994) is obtained by substituting CCEOOTOE cw,cww === , 

zcw CCT += , so that .zwwk CECT 0>=−=  Their Proposition 1 is a special case of our 

Proposition 15. 
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Proposition 17. If oil is dominant and has comparative advantage in transportation, and the 

inequality stated in Proposition 15 holds, the length of the second stage increases with k and 

decreases with )ww( OECE − and r. It is given by ,r/)
ww

k
ln(tt

OECE
�
�

�
�
�

�

−
+=− 112 where t1(t2) 

is the switch point from stage 1(2) to stage 2(3).18  

Proof: Since ),ww(e))t()t(()t(p)t(p)t( CEOE
rt

COCEOEE −+−=−= 00 λλϕ  

,)ww(e))t()t(()t( CEOE
rt

OCOOE 01
1 =−+−= λλϕ  so that .r/

)t()t(
ww

lnt
Co
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=
00

1 λλ
 

Similarly, 02 =)t(Tϕ implies .r/
)t()t(

ww
lnt

Co

OTCT
�
�

�
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�

�

−
−

=
00

2 λλ
 Subtracting t1 from t2 and some 

algebraic manipulation yields the result. � 

 

The above proposition suggests that the higher the magnitude of comparative advantage the 

longer the stage where both resources are extracted simultaneously. The higher the absolute 

advantage of oil in electricity, the smaller the length of the stage in which there is joint extraction 

of the two resources. This is intuitive because if oil has a high degree of absolute advantage in 

electricity, it is likely to be used in stage 1 and not in stage 2. This will decrease the use of oil for 

transportation in stage 2. Thus, dominance of oil leads it to be used in stage 1, while comparative 

advantage forces specialization of the two resources in stage 2. A higher discount rate decreases 

the length of the second stage. Since oil has absolute advantage in both resources, a higher 

discount rate implies that profits from the use of oil in transportation in stage 2 are discounted 

more heavily, reducing its duration. Conversely, as we saw in Proposition 15, a higher discount 

rate suggests that oil is better used in stage 1 for generating profits earlier in the time horizon.  

  

                                                 
18 An analogous result could be obtained for the case of Proposition 16. 
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Oil has Absolute Advantage in Transportation and Coal in Electricity 

We now consider the case wherein both resources have one absolute advantage each. We can then 

state the following: 

 

Proposition 18. When oil has absolute advantage in transportation and coal in electricity, there 

are only two possible solutions, each with two stages. The first stage is the same in both solutions 

-- oil is used for transportation and coal for electricity. In the second stage, either oil or coal is 

used exclusively for both uses. 

Proof: Let )t()t( CO 00 λλ > . Then from the proof of Proposition 9, coal will be used for both 

uses in the terminal stage. But 0>−+−= )ww())t()t(()t( CEOECOE λλφ  and is increasing 

in t. If  0000 >−+−= )ww())t()t(()t( CTOTCOT λλφ  then since 0>)t(Tφ� , oil will never 

be used, violating Lemma 1. Thus 00 <)t(Tφ . In the first stage, oil is used for transportation and 

coal for electricity, followed by coal in both uses. The proof for the case when )t()t( CO 00 λλ <  

is similar and not repeated.19 � 

 

By Proposition 14, if coal is sufficiently “abundant” relative to oil, its scarcity rent will fall. In 

that case, )t()t( OC 00 λλ < , so that the terminal stage uses coal for both demands. This can be 

seen graphically in Fig.2 with one modification: �E(t) is now everywhere positive so that there is 

only one switch point from oil to coal in transportation. Similarly, abundance of oil will imply 

that oil will be the terminal resource. Both solutions are summarized in Table 2(c,d). The polar 

                                                 
19 The measure zero event in which )t()t( CO 00 λλ =  yields a knife-edge equilibrium with complete 

specialization – oil is used for transportation and coal for electricity over the entire planning horizon. Both 

prices grow at the same rate. The price differentials )t(),t( TE φφ are constant functions. 
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case is when the stock of oil is unlimited, and it becomes a (conventional) backstop resource. In 

that case, the scarcity rent of oil is zero. The price differentials �E(t) and �T(t) are decreasing in 

time t. 

 

Clean Oil, Dirty Coal: Environmental Taxes in the 2x2 Case 

The multiple demand framework allows for the analysis of taxes that are resource or sector-

specific (or both). Again, for simplicity, consider oil to be a “clean’ resource and impose an 

exogenous tax on a “dirty” resource (e.g., coal) which is assumed to generate significant negative 

externalities. Other cases in which a resource and sector–specific tax (say, on coal in electricity 

generation) or only a sector-specific tax (a tax on the transportation sector, for instance, to reduce 

local pollution) may be imposed are discussed briefly later in this section. The single demand 

framework is inadequate for this purpose because it does not allow fuel substitution across 

sectors. We can then state the following result where the term “abundance” implies that the stock 

of oil is large enough to satisfy the inequality in Proposition 15: 

 

Proposition 19. If oil is abundant and has absolute advantage in transportation while coal has 

absolute advantage in electricity, a tax on coal equal to CEOEC wwt −>  will lead to oil being 

used exclusively in the beginning. 

Proof: With the above tax, the modified net cost of coal in electricity CEw~  is defined as 

OECEOECECCECE wwwwtww~ =−+>+= . Oil has dominance. By hypothesis, 

)ww()ww(k CEOEOTCT −+−= > 0 and is unaffected by the tax. Proposition 15 then implies 

that oil will be used exclusively at the beginning. � 

 

The important difference is that in the one-demand Hotelling model, a tax on the resource reduces 

its use. However, when oil has absolute advantage in transportation and coal in electricity, each 
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resource is being extracted in the first stage (Proposition 18). If oil is sufficiently abundant, a 

large enough tax on coal will lead to a shutdown in coal extraction, and both demands will be 

exclusively supplied by oil for a period after which, both resources will again be extracted jointly. 

The tax allows for a postponement of coal consumption until the future. This policy may be 

beneficial if, for example, exogenous research and development (e.g., on clean coal technologies) 

over time reduces the negative environmental externalities from coal.20 

 

If a sector-specific tax is imposed, e.g., on all fuels in the transportation sector, the outcome may 

depend on which of the two conditions (in Proposition 15 and 16) hold. One interesting case is 

when oil is a dominant and abundant21 resource, and has comparative advantage in transportation. 

Consider stage 2 of Proposition 15, i.e., oil is being used in transportation and coal in electricity. 

A sufficiently large tax on the transportation sector will in effect reduce the magnitude of 

transportation demand, so that the inequality in Proposition 15 may now be satisfied, leading to a 

switch to stage 1, i.e., oil supplying both forms of energy. Coal will no longer be extracted until 

stage 2 is reached again in this perturbed model. That is, a tax on the transportation sector may 

induce a shift from coal to oil in electricity. After the tax, oil is extracted for both demands, so 

that aggregate consumption of oil may increase. 

 

The implications of the tax may be quite different if the tax is resource and sector-specific, e.g., a 

tax on coal consumption in electricity.22 In that case, a tax that is larger than k will result in oil 

                                                 
20 The basic model could be extended to include differential environmental costs of fossil fuels. For 

instance, carbon emitted per unit of energy delivered from burning coal, oil and natural gas is 

approximately in the ratio 5:4:3. For analytical purposes, these costs could be modeled as extraction costs. 

The higher environmental damage from coal will be reflected in a higher net cost of coal in all demands. 

21 In the sense that the inequality in Proposition 15 holds. 

22 The gasoline tax, popular in many countries, is essentially a resource and sector-specific tax. 
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having comparative advantage in electricity, and coal in transportation. Thus, before the tax, oil is 

used in transportation and coal in electricity. After the tax, oil is used in electricity and coal in 

transportation.23 The tax causes a complete switching of fuels between the two sectors. 

 

Relative to the predictions of the Hotelling model, taxing the resource or taxing the sector (or a 

combination) may have very different implications for the extraction profile and for achieving 

pollution targets, a potentially significant policy issue that needs to be considered in detail in 

future research. Although we do not have endogenous choice of conversion technology that 

converts resources into final demands (e.g., automobiles, power generation equipment), there may 

be differential impacts depending on the type of tax imposed. Without a formal model, however, 

it is not clear ex-ante how, for example, the adoption of fuel-efficient automobiles will be 

affected by these alternative tax mechanisms. 

 

Sectoral Energy Prices 

The optimal resource use profile can be used to characterize sector-specific efficiency prices of 

energy. 24 Suppose again, that coal is “dirty” and oil is “clean,” and environmental costs of the 

resources are incorporated into the net cost so that .wwww OTOECECT >>>  This implies that 

                                                 
23 With this tax on coal in electricity, say tCE, k < tCE implies 

0)ˆ()()()( <−−−=−+−− OECEOTCTOECECEOTCT wwwwwtwww , where CEŵ  is the modified net 

cost of coal in electricity. Now oil has comparative advantage in electricity and coal in transportation.  

24 More generally, the price of a resource that is efficiently employed in a sector plus its conversion cost in 

that sector can be thought of as the shadow price of an intermediate good required for production of the 

final good.  If no intermediate good (such as energy) can be identified, the conversion cost can be taken as 

the non-resource production costs for the final good. 
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oil has a comparative advantage in transportation, i.e., .)ww()ww(k CEOEOTCT 0>−+−= 25 

Then we can state the following: 

   

Proposition 20. If oil is abundant, then the price of electricity is higher than that of transportation 

energy in the beginning and lower in the end. Within each stage, the sectoral energy prices grow 

at the same rate and the price differential is monotone decreasing over time.  

Proof: By Proposition 15, the abundance of oil implies it is used exclusively at the beginning, and 

coal at the end. In the beginning stage, 

0>−=+−+=− OTOEOTOOEOTE ww)w()w(pp λλ .  In the terminal stage, 

0<−=+−+=− CTCECTCCECTE ww)w()w(pp λλ . This proves the first part of the 

proposition. For the second part, note that pE and pT grow at the same rate in the first and last 

stages. In the middle stage, .p)t(r)t(rp ECCOOT ���� ==>== λλλλ  Thus pE - pT declines. � 

 

The two price paths are shown in Fig. 3. In the first stage, pE is higher than pT and both grow at 

the same rate. In the second stage, the price of transportation energy rises at a faster rate than 

electricity, and cuts the latter from below. In the terminal stage, both prices again grow at an 

equal rate.26 Since pE - pT  declines over time, it follows that if the price of electricity is lower in 

                                                 
25 The assumption of clean oil, dirty coal used here is stronger than that of oil with dominance and 

comparative advantage in transportation. The former provides an empirical justification for the latter more 

general set of assumptions. 

26 These sectoral price paths are purely a result of the relative ordering of net costs. The relative magnitude 

of demands in the two sectors plays a role only to the extent that the condition for Proposition 15 is 

satisfied. If the relative ordering of OTOE w,w  ( CTCE w,w ) were indeterminate, then the relative ordering 

of TE p,p would also be indeterminate. However, the price differential is driven by comparative advantage 
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the beginning then it must be lower for all subsequent periods. Notice that when oil has 

dominance and is used exclusively in the beginning, the inequality 

CTCEOTOE wwww −>− holds, hence TE pp −  is always lower in the terminal stage relative to 

the initial stage.  Thus a general consequence of comparative advantage in the 2 x 2 model is:  

 

Corollary: If a dominant resource is used at the beginning, the sectoral price differential must 

always decrease over time. 

 

4. Concluding Remarks 

In a model of multiple resources that satisfy multiple demands, optimal resource use is 

determined by two forces. Specialization of resources according to demand is driven by Ricardian 

comparative advantage. The order of resource use over time is determined by Ricardian absolute 

advantage, whereby resources with the lowest extraction and conversion costs tend to be used 

first.  Each principle partially masks the other, and only in polar cases do the pure forms of each 

principle emerge. In one such polar case, wherein conversion costs are independent of demand, 

resources will be used in order of absolute advantage, i.e. least cost first.  At the other extreme, in 

a m x m model, if each resource enjoys an exactly symmetrical universal comparative advantage 

in one demand and all demands and resource supplies are similarly symmetrical, then each 

resource will specialize in one and only one demand until simultaneous exhaustion.   

 

In the general case, results are more limited, but the same tendencies prevail. Within demands, 

resources are used in strict order of absolute advantage. Universally dominant resources are 

initially employed in all demands, provided that they are sufficiently abundant. Strictly inferior 

                                                                                                                                                 
and still declines monotonically over time. It is easy to check that it holds even if there was no initial stage 

with exclusive use of oil. 
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resources are exclusively used in the last stage of resource use. In the polar case, an unlimited 

quantity of a strictly inferior resource is a backstop resource. With an equal number of resources 

and demands, if each resource has absolute advantage in a given demand, no resource could 

exclusively supply all demands. As this case converges towards perfect symmetry, the use profile 

converges to a single stage solution, wherein each resource is used only according to comparative 

advantage. On the other hand, where resources can be ranked according to dominance (one 

resource with universal dominance, the next with universal dominance over the rest), then 

resource use converges to least-cost-first as conversion costs across demands become 

decreasingly disparate.  

 

With only two resources and two demands, either each resource has an absolute advantage in one 

end use or one resource is dominant. The possible sequences of resource use are characterized 

according to resource scarcity and the costs of extraction and conversion, thus highlighting the 

differentiated roles of absolute and comparative advantage as well as resource abundance. When 

a resource has a dominant absolute advantage and is sufficiently abundant, it is used exclusively 

at the beginning, contrary to the principle of comparative advantage. For example, oil may be 

used for electricity initially even though coal has comparative advantage in that demand. 

However, if each resource has absolute advantage in a given use, then resources are always used 

according to comparative advantage, and no resource may be an exclusive supplier, except in the 

terminal stage.  

 

Taxes on a dirty resource or on a given sector may induce significant substitution effects, 

including substitution towards sectors not being taxed, or a complete switch in resource use 

between sectors. For example, a resource and sector-specific tax (e.g., a gasoline tax) may shift 

comparative advantage such that oil is used in electricity and coal in transportation. The 

implication is that reduction of oil consumption (e.g., to reduce dependence on imports) or of coal 
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consumption (e.g., to reduce carbon emissions) may entail taxing those resources in all uses. 

More generally, evaluating the long-run consequences of alternative energy tax proposals requires 

calculation of the full energy use trajectory for each of the alternatives.  

 

The explanatory power of the neo-Ricardian theory described above can be enhanced by 

extending the model to include demand shifts, technological change, policy distortions, and 

transportation costs. For example the transition from whale oil to petroleum in the late nineteenth 

century has been attributed to the invention of the kerosene lantern. The transition from coal to oil 

in the late 19th and early 20th centuries is said to be due to advantages in transportation, the advent 

of the automobile, and technological improvements that lowered extraction and conversion 

costs.27 Further research is also needed to characterize higher dimensional models more fully.  

 

One can envision a similar theory being developed for explaining patterns of international trade.  

Dynamic comparative advantage has long been linked to changing endowments of factors. 

Inasmuch as resource depletion and capital accumulation are two sides of the same capital-

theoretic coin, one expects the trade-off between dynamic and intersectoral specialization to carry 

over to neoclassical trade theory. 

 

                                                 
27 See e.g., Rhodes (2002). The extent to which these changes were induced may also be the subject of 

further investigation.  
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Appendix 1 

PROOF OF PROPOSITION 1. We adopt Farzin’s (1982) proof of Theorem 15 in Seierstad and 

Sydsaeter (1987, Chapter 3) to show that a unique optimal solution exists to (1)-(3) and Theorem 

13 to show that the necessary conditions are also sufficient. Define )Uj,Rit),t(d(f ij ∈∈0  as 

the integrand of (1) and RitdUjtdf
Uj

ijiji ∈−=∈ �
∈

,)())(( . Then we need to prove the following 

statements: 

1. The functions )Uj,Rit),t(d(f ij ∈∈0  and Ri),Uj)t(d(f iji ∈∈  are continuous. 

Proof: By inspection. 

2. The functions Uj,Ri),t(d ij ∈∈  are bounded. 

Proof: Since )p(D j is bounded by assumption for any given j, )t(d ij is bounded, each .Ri ∈  

This is true for all .Uj ∈ � 

3. For any admissible path{ }Uj,Ri)t(d ij ∈∈ , there exists a piecewise continuous function 

)t(0φ with �
∞

∞<
0

0
t

dt)t(φ  such that )t()Uj,Rit),t(d(f ij 00 φ≤∈∈ . 

Proof: Since ,Uj,dp)p(D
t

j ∈∞<�
∞

0

�

�
∈Ri

ij )t(d

t
j dp)p(D

0

is bounded for all .Uj ∈  Since all other 

terms in the integrand of (1) are bounded, K)Uj,Rit),t(d(fe ij
rt <∈∈0 where K is some 

upper bound. Let rtKe−=0φ so that �
∞

∞<=
0

0
t

r/Kdt)t(φ . Then 

).t(Ke)Uj,Rit),t(d(f rt
ij 00 φ=≤∈∈ −

� 
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4. For any admissible { }Uj,Ri)t(d ij ∈∈ , there exists piecewise continuous functions 

Ri),t(i ∈φ with �
∞

∞<
0t

i dt)t(φ  such that .Ri,)t()Uj)t(d(f iiji ∈∀≤∈ φ  

Proof. Let )t(Q)t( ii
�−=φ . Then 

� �
∞ ∞

∞→
≤+−=−=

0 0

00
t t

iii
t

ii )t(Q)t(Q)t(Qlimdt)t(Qdt)t( �φ since 0≥)t(Qi from (2). 

Now 0≥)t(d ij implies from (3) that 0≤)t(Qi
� hence 

)t()t(Q)t(Q)t(d)Uj)t(d(f iii
Uj

ijiji φ=−==−=∈ �
∈

�� . This holds for all .Ri ∈ � 

5. For any admissible { }Uj,Ri)t(d ij ∈∈ , there exist non-negative functions a(t) and b(t) such 

that ).t(b),...t(Q),t(Q)t(a),...t(d(f)),t(d(f iijij, +≤ 221  

Proof. Since �
∈

−=
Uj

ijiji )t(d))t(d(f by definition, it is bounded by statement 2, .Ri ∈∀  Thus 

the norm 212
2

2
121

/...)ff(,...f,f ++= is bounded. Let b(t) be this bound and put a(t)�0. � 

6. The function )Uj,Rit),t(d(f ij ∈∈0 is concave for all t. 

Uj)p(D j ∈∀<′ 0 and linearity of the rest of the terms in (1) imply concavity of .tf ∀0  � 

 

PROOF OF PROPOSITION 10. Suppose that qac(t0)=0 for some c � U. Then since demand is 

positive, there exists b � R such that qbc(t0) > 0. Then from (6), 

)t(wp)t(w aaccbbc 00 λλ +≤=+  which since wbc – wac  �  s0   implies that 

)t(s)t( ba 000 λλ +≥  which from (8) yields 

)t(ese))t(s(e)t()t( b
rtrt

b
rt

aa λλλλ +=+≥= 0000 .    (A1) 
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Since resource a is universally dominant, sj>0 for j � U. Let r/)s/slog(t̂ jj 0=  for j � U so 

that 

s0e
rt > sj for t > jt̂  and j � U.        (A2) 

Then from (A1), (A2) and the definition of sj, 

)t(w)t(sw)t(esw)t(w bbjbjajb
rt

oajaaj λλλλ +≥++>++≥+  for jt̂t >  and j � U. So 

from (6),  

qaj(t)=0 for .Uj,t̂t j ∈>         (A3) 

Let 	j(t) = waj + s0e
rt for j � U so that  

jajjjajj sw)t̂(,sw)t( +=+= γγ 00 , and )w)t((rers)t( ajj
rt

j −==′ γγ 0 for j � U. (A4) 

From (A1) and since �b(t)� 0, 

)t(esw)t(esw)t(w j
rt

ajb
rt

ajaaj γλλ =+≥++≥+ 00  for j � U.   (A5) 

From (6),  

)t(q))t(p(D))t(w(D)t(w)t(p ajjjaajjaajj ≥=+	+= λλ  for j � U and  

))t(p(D)t(q)t(w)t(p jjajaajj ≤=	+< 0λ  for j � U, and therefore 

)t(q))t(w(D ajaajj ≥+ λ  for j � U.        (A6) 

Thus 

��� �� �
∈∈∈

+

+

=
−

=
− Uj

t̂

t
j

Uj

)t̂(

)t( aj

j

Uj

ws

ws aj

j
jjj

j

ajj

aj

dt))t((Dr
dp)wp(

)p(D

dp)wp(

)p(D

000

γ
γ

γ

 

�� ��
∈ ∈

∞

=≥+≥
Uj

t̂

t Uj t
aajaajj

j

)t(rQdt)t(qrdt))t(w(D
0 0

0λ     (A7) 

where the change of variables follows from (A4), the first inequality follows from (A5) and that 

demand is downward sloping, the second inequality follows from (A3) and (A6), and the last 
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equality follows from (4). Since (A7) contradicts the premise, the supposition is false and so 

qac(t0) > 0. Then since c was arbitrary, qaj(t0) > 0 for j � U. � 

 

PROOF OF PROPOSITION 15. Define )t(p)t(p)t( CEOEE −=φ  and 

)t(p)t(p)t( CTOTT −=φ .  Then 

)pp()pp()t()t( CECTOTOETE −+−=−φφ = k)ww()ww( CEOEOTCT =−+− . Thus 

)ww()()w()w()t( CEOECOCECOEOE −+−=+−+= λλλλφ  

).ww(e))t()t(( CEOE
rt

CO −+−= 00 λλ  Similarly, 

).ww(e))t()t(()t( CTOT
rt

COT −+−= 00 λλφ  Suppose ).t()t( CO 00 λλ ≤  Then 

00 << )t(,)t( TE φφ so that coal is never extracted, contradicting Lemma 1. Thus 

)t()t( Co 00 λλ >  and �E(t), �T(t) are continuous and .)t(,)t( TE 00 >> φφ ��  If  k)t(E ≥0φ , 

then 000 ≥−= k)t()t( ET φφ so that oil will never be used. Hence k)t(E <0φ . Let 10 tt =  

where t1 denotes the switch point where electricity supply moves from oil to coal. Then, 

00 ≥)t(Eφ . Since �E(t) is monotone increasing,  0>−= )t(p)t(p)t( CEOEEφ  for all t 
 

(t0,�) it implies that qOE(t)�0. Thus OECECO ww)t()t( −≥− 00 λλ so that 

).e)(ww()t( rt
OECEE 1−−≥φ  Define .r/))

ww
k

(log(t
OECE

N −
+= 1  Then for t � tN, 

k)e)(ww()t( Nrt
OECEE =−−> 1φ so that 0>−= k)t( ET φφ , hence qOT(t) � 0 for t � tN. Let 

.e)ww(w)t( rt
OECEOT −+=γ  Then ,kw)t( CTO −=γ , CTN w)t( =γ  and 

).w)t((r)t( OT−=′ γγ  Finally, 

� � �
−

′
−

=
−

=
−

CT

CT

N Nw

kw

)t(

)t(

t

t OT

T

OT

T

OT

T dt)t(
w)t(

))t((D
dp

wp
)p(D

dp
w)t(p

)p(D γ

γ

γ
γ

γ

0 0
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� � �
∞

=≥≥
N Nt

t

t

t t
OTOTTT )t(rQdt)t(drdt))t(p(Drdt))t((Dr

0 0 0

00γ .� 
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Appendix 2 

We show that Corollary 1 of Benveniste and Scheinkman (1979) holds for the problem defined in 

equations (1-3). Our maximization problem in (1-3) can be rewritten in their notation as:  

 

Given a technology set ,T m2ℜ⊆  find an absolutely continuous path (Qi(t)) which solves 

Max �
∞

0

dt)t),t(Q),t(Q(u ii
�  

subject to tT)t),t(Q),t(Q( ii ∀∈�  and Qi(t0) fixed, where Qi=(Q1,..,Qm) is the vector of resource 

stocks and .)q,..,q()t(Q
n

j

n

j
mjji � �

= =

=
1 1

1
�  We check that the following conditions hold:  

Assumption 1:  The pair mTtQtQ 2))(),(( +ℜ⊆∈� is convex since resource stocks are non-

negative and finite and 
0

T is not empty since there must be a resource with a positive stock. 

 

Assumption 2: The mapping RRT:u →×  given by  

� � ��
∈ ∈ ∈

−−

�

−=⋅⋅⋅
∈

Uj

)t(q

Ri Uj
ijijj

rt
Ri

ij

)]t(qwdx)x(D[e),,(u
0

1 is continuously differentiable on RT×
0

 

since the demand function is continuous, and ℜ→⋅⋅ T:)t,,(u is concave since the right hand 

side of the above equation is concave (see Theorem 10.7, Rockafellar, 1970).  

 

Assumption 3: An optimal solution { }∞
= 00 tti )t(Q,t(y exists and V(Qi) is well-defined in some 

neighborhood of Qi(t0) (see Proposition 1). 
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Assumption 4. 
0

000 T))t(Q,t(y),t(Q( i ∈� and the optimal control is a piecewise function of time 

(see Seierstad and Sydsaeter, 1987, Theorem 1, p. 75 and Theorem 12, p. 234). � 
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Table 1. World Total Final Energy Consumption by Sector (in MTOE): 2000 

 

Sectors Coal Crude Oil 

& Products 

Natural 

Gas 

Nuclear, 

Hydro & 

Others* 

 Total Percent 

Share 

Industry  411.5 592.4 491.1 691.1 2186.1 31.6 

Transportation 5.9 1701.4 53.7 27.8 1788.8 25.9 

Residential & 

Others 

128.9 655.9 570.3 1575.3 2930.4 42.5 

TFC 546.3 2949.7 1115.1 2294.2 6905.3 100 

Percentage 

Share 

7.9 42.7 16.2 33.2 100  

*Includes combustible renewables, industrial waste, solar, wind, etc.   

Glossary: MTOE: Million Tons of Oil Equivalent; TFC: Total Final Consumption 

Note:  Electricity consumption is not reported separately since it is an intermediate product. In 2000, 

1322.6 MTOE of electricity was produced out of which 42.2% was used in industry and 56% in the 

“Residential and Others” sector. Electricity was mainly produced from coal (39%), nuclear, natural gas and 

hydro (approximately 17% each) and oil (8%). 

Source: Adapted from International Energy Agency (2002). 
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Table 2. Solutions to the two-resource two-demand case 

 

E T 

O O 

C O 

C C 

 

(a): Oil has dominance and comparative advantage in transportation. 

 

 

E T 

O O 

O C 

C C 

 

(b): Oil has dominance and comparative advantage in electricity. 

 

E T 

C O 

O O 

 

(c): Oil has absolute advantage in transportation and coal in electricity; oil abundant. 

 

E T 

C O 

C C 

 

(d): Oil has absolute advantage in transportation and coal in electricity; coal abundant. 

 

Notes: E: Electricity; T: Transportation; O: Oil; C: Coal 

Another set of four solutions can be generated by switching oil and coal. 
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Fig.1. Extraction profile when oil is dominant and has comparative advantage in 
transportation. Oil is used exclusively at the beginning and coal at the end.   
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Fig.2. Oil is dominant and has comparative advantage in transportation (k>0). Oil is 
used in electricity until t1 and in transportation until t2. 
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Fig. 3. Clean oil, dirty coal: the price path for transportation cuts the price of electricity 
from below.  




