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Abstract

Competitive equilibria are shown to exist in two-object exchange economies with
indivisibilities and additive complementarities in agent valuations between objects,
provided that complementarities are common across agents. We further investigate
whether the competitive equilibrium can be obtained as an outcome of a simultaneous
English-type auction mechanism under non-strategic (honest) bidding.
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1 Introduction

This paper addresses the problem of allocating two heterogeneous objects among a num-
ber of agents in an environment where there exist positive complementarities in agent
valuations between objects. The problem of allocating heterogeneous objects in the pres-
ence of complementarities emerged, for example, in the recent sale of spectrum licenses by
the Federal Communications Commission (Ausubel et. al., 1997). There are two issues
of interest. The first is the existence of competitive equilibrium. The second is whether
the competitive equilibrium can be obtained as an outcome of a relatively simple auction
mechanism.

It is well-known that competitive (Walrasian) equilibria may not exist in environments
with indivisible objects. Kelso and Crawford (1982) and further Gul and Stachetti (1999)
show that the competitive equilibrium exists in environments with indivisibilities if the
gross substitute condition is satisfied, that is, if there is a certain substitutability in agent
valuations across objects. In the presence of complementarities, examples of non-existence
of competitive equilibrium are easily generated (e.g., Bykowsky et al., 2000). It is then
of interest to investigate whether competitive equilibria exist in some special classes of

environments with complementarities.
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Brusco and Lopomo (BL, 1999) consider two-object environments with either no com-
plementarities or large additive complementarities in their study of bidder collusion in
multi-unit ascending price auctions. Although they focus on collusive equilibria of these
auctions, they demonstrate that there also exist Perfect Bayesian Equilibria (PBE) that
can be easily shown to be competitive (Walrasian) equilibria in the neoclassical sense.
However, BL do not consider the case of moderate complementarities.! We show that, at
least in the special case when complementarities are common to all bidders, the competi-
tive equilibrium exists and is efficient irrespective of the magnitude of the complementarity
term.

The second issue of interest is whether the competitive equilibrium outcomes may
be implemented via a simple auction mechanism. Demange, Gale and Sotomayor (DGS;
1986) introduced a progressive auction mechanism that, under the assumption of honest
(non-strategic) bidding, achieves efficient allocations and minimal Walrasian equilibrium
prices. They consider a multi-unit allocation problems with heterogeneous goods, in which
each bidder is constrained to get at most one object. Gul and Stachetti (2000) suggest a
progressive auction mechanism that achieves efficient allocations and minimal Walrasian
equilibrium prices in environments where bidders are not constrained to buy only one
good, but the gross substitute condition of Kelso and Crawford (1982) on agent prefer-
ences is satisfied. We investigate whether the competitive equilibrium (CE) outcomes may
be achieved by honest bidders under a simultaneous (non-combinatorial) progressive auc-
tion in the common complementarity case. Honest bidding rules prescribe bidding on an
object or a package only if it maximizes bidder payoff at current prices. While honest bid-
ding may or may not be an equilibrium strategy, it may correspond to naive price-taking
behavior by unsophisticated bidders. We show that in the case of two bidders, a certain
variation of the simultaneous ascending price auction mechanism ensures that honest bid-
ding leads to minimal CE prices and efficient allocations for any value of complementarity
(moderate or large). The variation we propose is analogous to the “exact” progressive
auction mechanism of DGS, where bidders are required to report their full demand sets at
each price. In contrast, the “approximate” bidding mechanism analogous to simultaneous
English auction, such as the one considered by BL, may result in prices above the com-
petitive equilibrium levels and bidder losses due to the exposure problem (Bykowsky et
al., 2000). With more than two bidders, both the exact and the approximate mechanisms
may result in disequilibrium allocations and prices. However, we show that such problems

never arise and both mechanisms perform well if the complementarity is large.

IBL note that in general, in this case both the competitive and collusive PBE are hard to characterize.



2 Characterization of competitive equilibrium in the com-
mon complementarity case

The framework is similar to BL (1999). There are two objects, A and B, and a set N of
n agents (bidders), n < co. Let a; be bidder i’s value for object A, and b; be bidder i’s
value for object B, with a;,b; € [0,7]. Then i’s value for the package AB is given by

UZ(AB) =a; + bi + k,

where & is the common additive complementarity term, k > 0.2 Let W be the set of
possible packages that can be sold to a bidder, W = {0, A, B, AB}, and let w be an
element of W. We assume that bidders have quasilinear utilities in packages and money,
and are not budget constrained. Then bidder i’s utility of buying a package w given prices
p = (pa,pp) is i’s net value of the package, or his surplus: Si(w;p) = wi(w) — >, Py,
where j is the object index, j € {a,b}. Specifically,

Si(0;p) =0 (1)
Si(A;p) = a; — pa (2)
Si(B;p) = bi — po (3)
Si(AB;p) = a; — pa +bi —pp + k (4)

For any price vector (pg,pp), let i’s demand set be the set of packages that maximize i’s

surplus at this price:
Di(p) = {w € W|S;(w; p) = mazyew Si(v;p)}. (5)

We employ a standard Walrasian notion of competitive equilibrium. A price p =
(pa,pp) is a competitive equilibrium price if, given p, there is an allocation of objects
to bidders p : {A, B} — N such that each bidder gets a package in their demand set,
i.e., there is no excess demand. Such price and allocation pair (p, ) is called a compet-
itive equilibrium. Given that bidders’ values for objects are non-negative, a;,b; > 0, the

equilibrium also requires no excess supply, i.e., both objects are allocated to bidders.

2BL allow the additive complementarity term to vary across bidders, so that u;(AB) = a; + b; +
k;, with k; € K, where K is either {0} (no complementarity) or an interval [k, k] with k& > o (large
complementarity). Assuming that the object values are drawn independently across bidders from the
same probability distribution, and the objects are allocated using a simultaneous ascending bid auction,
BL show that with either no complementarity or with large complementarities there exists a PBE of this
auction that lead to a CE outcome in the neoclassical sence; the resulting allocation is efficient. With no
complementarity, the bidders with the highest values for each object buy the objects at the prices equal
to the second highest values for that objects. With large complementarities, the two objects are allocated
to the bidder with the highest value for the package, at the price equal to the second highest valuation for
the package.



In the presence of complementarity, efficiency and equilibrium conditions and prices
will differ depending on whether the objects are allocated to the same or to different
bidders. We will say that “packaging” is efficient if it is efficient to allocate both items to
the same bidder i € N. “Splitting” is efficient if it is efficient to allocate the items to two
different bidders.

Proposition 1 For any finite number of bidders, n < oo, and any common comple-
mentarity term, k > 0, the set of CE prices and allocations is non-empty, and any CE

allocation is efficient.3 The set of CE prices is characterized as follows:

o Suppose that allocating both items to one bidder, or packaging, is efficient:

a; + b+ k> max{ljt%%( a; + max bj, n]ai;c(aj +0bj)+ k} (6)

for some i € N. Then the set of CE prices is given by (pa,pp) such that

m;éix(aj—i-bj)—i-k < pat+py < ai+bi+k; (7)
JF
maxa; < p, < a;j+k; (8)
J#
m;szj < p < btk (9)
JF

e Suppose that splitting of items between bidders is efficient:

a; + bj = max{maxa; + maxb;, max(a +by) + k}, (10)

for some i,j € N, i # j. Then the set of CE prices is given by (pq,pp) such that

max (a; +b) +k < pa+ p; (11)
I#i#]
max{a; +k, max a;} < p, < a; (12)
i)
max{b; + k, max b;} < p, < b;. (13)
[#i#]

Before turning to the proof of proposition 1, it is useful to write out explicitly conditions
under which a package w € W is demanded by a bidder i € N. Let p = (pq, py) be a price
vector. Applying definitions 1-4 and 5, we obtain:

e AB € D;(p) if and only if:

a; +bi+k > pa+pp (14)
bi+k > pp (15)
a; +k > Pa- (16)

3If CE exists, then efficiency follows from the First Welfare Theorem. We re-establish efficiency here
for the sake of completeness.



e A€ Dj(p) if and only if:

v

Pa (17)
bi+k < . (18)

a;

(The third condition, a; —p, > b;—pp, follows from 17-18 and is therefore redundant.)
e B € D;(p) if and only if:

b;

v

Db (19)
a;+k < pa. (20)

(The third condition, b; —pp > a;—pa, follows from 19-20 and is therefore redundant.)

e () € D;(p) if and only if:

a; +bi+k < pa+pp (21)
a; < pg (22)
bi < Db (23)

The following efficiency conditions will be also useful:

e Efficiency condition 6 holds, i.e., it is efficient to allocate the package AB to bidder
1 € N, if and only if:

a; +b; > aj+b; forall je N (24)
a; +b;+k > aj+b foralljl#1 (25)
bi+k > b; forall j#i (26)
a;+k > a; forallj#i. (27)

e Efficiency condition 10 holds, i.e., it is efficient to allocate item A to bidder i € N,
and item B to bidder j € N, i # j, if and only if:

a; > a forallle N (28)
bj > b forallle N (29)
bj > b+ k (30)
a; > aj+k. (31)
a; +b; > max(a;+b)+ k. 32
i l##j( 1+ br) (32)



Proof of proposition 1 The sets of CE prices are derived by solving for the no excess
demand equilibrium conditions. Let (u,p) be a CE price and allocation pair. Suppose
under allocation p each bidder i € N is assigned a package w; € W, so that U;w; = {A, B},

w;Nw; =0 for all 4,5 € N, i # j. The no excess demand conditions are:
Si(wisp) = Si(vip) for any v € W. (33)

There may be only two types of equilibrium allocations: either both items in {4, B}
are given to one of the bidders, or the items are split between the bidders. Consider
equilibrium conditions for each of the two cases in turn.

CASE 1: Suppose that, in equilibrium, the package AB is assigned to bidder ¢ € N.
The no excess demand conditions are conditions 14-16 for bidder ¢, and conditions 21-23
for all other bidders j # i. Combining the inequalities, we obtain the characterization of
the set of CE prices as given in 7-9. Note that a price vector satisfying the ineqalities 7-9
exists if and only if conditions 24-27 hold: Obviously, if conditions 24-27 are satisfied, we
can find prices (pq,pp) that satisfy 7-9. Conversely, suppose there exists a price vector
(pa, pp) satisfying 7-9. Then 7 implies 24, 8 implies 27, 9 implies 26; finally, adding 8 and
9, we obtain max;; a; + max;x; by < p, + py, which, together with 7, implies 25. Hence
we obtain that a set of CE prices supporting the allocation of the package AB to bidder
7 is non-empty if and only if such allocation is efficient.

CASE 2: Now suppose that, in equilibrium, item A is assigned to bidder 7, and item
B is assigned to bidder j, for some i,j € N, j # i. Hence A € D;(p), B € D;(p), and
() € Dy(p) for all [ i # j; that is, inequalities 17-18 hold for i, inequalities 19-20 hold for
j, and inequalities 21-23 hold for all other bidders [ # i # j. Combining these inequalities,
we obtain the characterization of the set of equilibrium prices as given by 11-13. As in the
previous case, it is straightforward to show that a price vector satisfying ineqalities 11-13

exists if and only if efficiency conditions 28-32 hold. O

We will say that a CE price p is a minimal CE price if for any other CE price p,
Pa + Do < Po + Pp. Let us compare the minimal CE prices in the common complemen-
tarity case with two benchmarks. The first is the prices that result from the separate
English auctions (SEA) run for each object if there are no complementarities between
objects. Obviously, the SEA then implement an efficient outcome, with prices equal to
the second highest values for each object: Let a; = maxjcn a;, and b; = max;cy by; then
(ngA,p;fEA) = (max;»; a, max;.; by). Observe that these are the minimal CE prices for
the no complementarity case.

The second benchmark is the prices that would result if A and B are bundled and sold

in an English auction as a package, without the option of splitting the objects between



the bidders. The two objects are then allocated to the bidder with the highest value
for the package, at the price equal to the second highest valuation. We will call this
price the Vickrey price for the package: Let (a; + b;) = maxjen(a; + b;); then plick =

man?gi(aj + bj) + k.

Corollary 1 1. In the presence of a positive complementarity, k > 0, any CFE price is

no lower then the minimal competitive (SEA) price in the no complementarity case:
(Par 1) > (0554, 4.

2. If the complementarity is large, k > U, then packaging of items is always efficient,

and the minimal CFE price for the package is equal to the Vickrey price:
Pa + P = max(a; +bj) + k, (34)
JF1
where i € N is such that (a; + b;) > (aj + bj) for all j # i.

Statement (1) of the corollary follows from conditions 7-9 and 11-13 of proposition 1.
Statement (2) is obtained by observing that 10 cannot hold as a strict inequality if & > 0,
and by further checking that in this case maxj4;(a; 4+ bj) + k > max;-; a; + max;,; b;,
where ¢ is the bidder with the highest value for the package; hence the lower bound on the
sum of CE prices is determined from inequality 7.

The following characterization of CE prices in the case of two bidders will be used in

further analysis.

Corollary 2 Let there be two bidders, n = 2, denoted by indexes i,j € N, with i # j.

o Suppose that allocating both items to bidder i, or packaging, is efficient. Then the

set of CF prices is characterized by the following constraints:

aj—i-bj-i-k < potpp < a;+ b+ Ek; (35)
a;j < po < a;+k; (36)
bj < py < bi+k. (37)

The minimal CFE prices are as follows:

1. If a; > aj and b; > bj;, then the set of minimal CE price vectors is given by:
Pa = aj+ Ak (38)
P = bj+(1—-Nk (39)

for any X € 0,1]. In particular, (aj,b; + k) and (a; + k,b;) are minimal CE

price vectors.



2. If a; > aj and b; < b;, then the set of minimal CE price vectors is given by:
Pa = a;j+Ak+(1—=X)(bj —b;) (40)
o = bj+ (1 =Xk—(1—=X)(bj—b) (41)
for any X € [0,1]. In particular, (a;+b; —b;,b;+k) and (a;+k,b;) are minimal
CFE price vectors.
3. If a; < aj and b; > bj;, then the set of minimal CE price vectors is given by:
Pa = aj+ (1 =Nk—(1-X(a; —ai) (42)
o = bj+Ak+(1—-N)(aj —a;) (43)

for any A € [0,1]. In particular, (a;+k,a;+bj—a;) and (aj,b;+k) are minimal

CFE price vectors.

e Suppose that splitting of items between bidders, such that bidder i is allocated A, and
bidder j is allocated B, is efficient. Then the set of CE prices is given by (pq, pp)

such that
aj+k < pa < (44)
bi+k < pp < bj. (45)
The minimal CE price is given by:
Pa = aj+ k (46)
p = bi+k. (47)

The above also implies that in the case of two bidders, the minimal CE price equals the

Vickrey price of the package for any value of k, as long as the packaging is efficient:

Corollary 3 Let there be two bidders, n = 2. Suppose that packaging of items is efficient,
a; + b + k > max{a; + b;,a; + b;,a; + b; + k}, for some i,j € N, i # j. Then, for any
value of complementarity term, k > 0, the minimal CFE price for the package equals to the

Vickrey price: pq +py, = aj + bj + k.

3 Performance of the exact simultaneous auction mecha-
nism under honest bidding

We next investigate whether competitive equilibrium outcomes may be achieved by honest
bidders under a simultaneous English-type auction (SIMEA) in the common complemen-

tarity case. As in DGS (1986), we will consider two variants of the SIMEA mechanism



— the exact and the approximate mechanisms. We discuss the exact mechanism in this
section. The auction starts with an initial price vector (p%,p)) = (0,0) announced by the
auctioneer. We assume that all values are discrete. Specifically, all prices are integers,
and all bidder valuations are even integers (in general, for the case of two objects, if all
valuations are multiples of 4, prices are required to be multiples of 4/2). Each bidder
announces which packages w € W are in her demand set at this price. It is required
that all bidders report all packages in their demand sets. If it is possible to assign items
{A, B} to bidders so that each bidder gets a package in her demand set, then the prices
must be at a CE, and the auction stops. If no such assignment exists, then the auctioneer
raises prices by one unit on items in {A, B} which are overdemanded. An items is overde-
manded at price p if it is necessary to increase the supply of this item (and, possibly, some
other items) to find an assignment so that each bidder gets a package in their demand
set. For example, in the case of two bidders, if bidder 1’s and 2’s demand sets at price
p are Di(p) = {AB}, D2(p) = {AB}, then the overdemanded set is O(p) = {A, B}. If
bidder 1’s and 2’s demand sets at price p are D1(p) = {AB, A}, Ds(p) = {AB}, then the
overdemanded set is O(p) = {A}.* After the prices are raised, the bidders report their
new demand sets, and the procedure continues until a price vector is reached at which no
excess demand exists. We first show that with two bidders, two objects and a common
complementarity term k > 0, if all bidders report their demand sets honestly (that is, they
follow the honest bidding strategy), the exact SIMEA mechanism converges to a minimal

CE price and leads to an efficient allocation.

Proposition 2 Suppose there are 2 bidders, n = 2. If bidders follow the honest bidding
strategy, then, for any value of the common complementarity term k > 0, the exact SIMEA

mechanism converges to a minimal CE price, and the resulting allocation is efficient.

It is clear that under honest bidding, the iterations will stop at some point, since
prices are bounded by bidder valuations: p,,p, < v + k. It is also obvious that in the no
complementarity case, k = 0, the mechanism will converge to the SEA prices. To establish
the case of positive complementarity, k£ > 0, we employ the following properties of bidder

demands under honest bidding:

Lemma 1 (No switching) Suppose bidders bid honestly in the exact SIMEA, and let
k > 0. For any bidder i, any price p, and any items v,w € {A, B} with v # w, if

If bidder 1’s and 2’s demand set at price p are D;(p) = {AB,A, B}, Da2(p) = {AB}, then the
overdemanded set is either O(p) = {A}, or O(p) = {B}, but not {A, B}. The mechanism then prescribes to
raise the price of either A or B, but not both. This creates an indeterminacy in the mechanism. Lemma 1
below shows, however, that under honest bidding, a bidder’s demand set may never consist of {AB, A, B},
given k > 0. For k =0, {AB, A, B} C D;(p) implies § € D;(p).



v € D;(p), then w ¢ D;(p) for all and p > p. That is, a bidder does not demand two
packages containing two separate items at the same time, and does not switch from one

separate item to the other as the prices rise.

Proof Suppose that, for some bidder i € N, A € D;(p) at some price p = (pa,pp). Then,
from 18, p, > b; + k, which obviously implies that p, > b; + k for any p, > py. But,
from 19, we may have B € D;(p) only if p, < b;. O

Lemma 2 (Bidder demands with and without complementarities) Suppose bidders
bid honestly in the evact SIMEA. For any price p, let D?(p) denote bidderi’s demand set in
the no complementarity case, k = 0, and let D;r (p) denote bidderi’s demand set in the pos-
itive complementarity case, k > 0. If, at some price p, AB € DY(p), then D (p) = {AB};
if v € DY(p) for some v € {A,B}, and O ¢ DY(p), then D (p) C {v,AB}. That is, a

positive complementarity induces bidders to seek higher aggregations.

Proof Suppose, for some price p, AB € D?(p). This implies that a; > p, and b; > py, and,
hence, D} (p) = {AB} for any k > 0. Now suppose that A € D?(p) and () ¢ DY(p). This
implies that a; > p, and, hence, for any k > 0, either D} (p) = {A} (if p, > b; + k), or
Df (p) = {AB} (if p < b; + k), or D (p) = {A, AB} (if pp = b; + k). O

The above proof also demonstrates that if, at some price p, there is excess demand

when k£ = 0, then there is excess demand when k£ > 0. Hence, we obtain:

Corollary 4 (Lower bound on prices) If bidders bid honestly in the exact SIMEA,

then final auction prices are at least as high as the SEA prices in the no complementarity

case: (PayPp) > (ngA’prEA)'

We now prove proposition 2.

Proof of proposition 21t is sufficient to consider the positive complementarity case, k > 0.
Since a; > 0 and b; > 0 for all ¢ € N, we observe that both bidders will initially demand
package {AB} only, and therefore the prices will rise on both items simultaneously. Let
t be the last iteration at which both bidders demand {AB} only; let the corresponding
price be p! = pﬁ = p. From 14-16, this implies that for each i € N:

a; +b;+k>2p (48)
a;+k>p (49)
b; + k> p. (5())

10



Suppose, at iteration ¢+ 1, bidder ¢ reports some other package in her demand sets. Given
honest bidding, we note that p 4+ 1 > min{ay, az, b, ba}. There are two possibilities:
CAsE I: § € Di(p + 1). This implies that:

a; +b; +k <2p+2 (51)
a; <p+1 (52)
b <p+1. (53)

From inequalities 48 and 51 (and given that the values are even intergers), we obtain that
a; + b; + k = 2p + 2. The auction stops at the price p, = p, = p + 1, and package AB is
allocated to bidder j # i.

It is left to demonstrate that this allocation is efficient. Since j demanded {AB} at
iteration ¢, we obtain that a; +b; +k > 2p+2 = a; + b; + k, i.e., aj + b; > a; + b;. We
next need to show that a; + b; + k > max{a; + b;, a; + b;}, or:

a; S CLj + k? (54)
b < bj + k. (55)

But these follow from inequalitites 49 and 52, 50 and 53 implied by j’s demand at p and
i’s demand at p + 1:

aj+k>p+1=>a (56)
We note that the resulting price satisfies all the requirements 35-37 of CE prices and is,
by corollary 2, a minimal CE price: p, + pp, = a; + b; + k.

Case II: 0 ¢ D;(p+ 1). Suppose, without loss of generality, that A € D;(p+ 1). By
lemma 1, B ¢ D;(p+ 1). (The case when B € D;(p+ 1), A ¢ D;(p + 1) is analogous.)
Similarly to Case I above, given that all values are even intergers, we obtain AB € D;(p+1).
Hence, Di(p+1) = {A,AB}. A € D;(p + 1) implies:

ai >p+1 (58)
bi+k=p+1 (59)

If follows that a; > b; + k. The auction may follow several scenarios depending on the

demand of bidder j:

1. If 0 € Dj(p + 1), then the auction stops, and the package AB is allocated to bidder

7. This is Case I considered above.

11



2. If0) ¢ Dj(p+1) and B ¢ D;(p+ 1), then either Dj(p+ 1) = {AB}, or Dj(p+ 1) =
{A, AB} and the price will further rise on item A, but not on B. The following two
points are worth noting. First, for any p = (pa, ps) such that p, > p+1, pp = p+1, if
S;j(AB;p+1) > S;(A;p+1), then S;(AB; p) > S;(A;p). If S;(AB;p+1) = Sj(A;p+
1), then S;(AB;p) = S;(A;p). That is, bidder j’s preferences between packages A
and AB do not change when the price rises on A, but not on B; this follows from
the relation between j’s surpluses from A and AB identified by conditions 15 and
18. Similarly, bidder i will demand either { A, AB}, or nothing, when the price rises
on A but not on B. (By lemma 1, she will not demand B). Second, since bidder
J still demands package AB at the price (p + 1,p + 1), we obtain, using 59, that
bj+k>p+1=0b;+k, and hence b; > b;.

There are only three possible cases:

(a) Bidder j keeps demanding AB (and, possibly, A, but not B), until (p,,pp) =
(ai,b; + k). At this point bidder i reports () as part of her demand set, and
the auction stops, with package AB allocated to bidder j. Let us show that
this allocation is efficient. Since AB is demanded by j at the price (pg,ps) =
(a;, b; + k), we have:

aj—i—bj%—k:Zai—l—bi—i—k (60)
bj—l—kZbZ‘—i-k (61)
aj—l—kZai. (62)

The above three inequalities imply that it is efficient to allocate package AB to
bidder j, as given by efficiency conditions 24-27. From corollary 2, the resulting
price (pa,py) = (@i, b; + k) is a minimal CE price.

(b) Bidder j keeps demanding AB and then demands B when the price of A reaches
some level pg, b; + k < p, < a;. At this point the auction stops, with item A
allocated to bidder 7 at the above price p,, and item B allocated to bidder j at
pp = b; + k. Let us show that this allocation is efficient. Since j demands B at
the price (pq, b; + k), we have:

bj > b+ k (63)
a; +k = p,. (64)
From 64, a; +k = p, < a;, and therefore a; + k < a;. Hence we obtain that
bj > b;+k and a; > a; + k, which are equivalent to the efficiency conditions 28-

32 adopted for the case of two bidders. Hence, the items are allocated efficiently

at the minimal CE price (pq,ps) = (aj + k,b; + k).

12



(c) Bidder j keeps demanding AB (and, possibly, A), and then demands () when
the price of A reaches some level p,, b; + k < p, < a;. At this point the auction
stops, with package AB allocated to bidder i at the price (pg,b; + k), where
pq is defined as above. Let us show that such allocation is efficient. Since j

demands @) at the price (pg,b; + k), we have:

pa+bi+kz:aj+bj+k: (65)
Pa = a; (66)
bi +k > bj. (67)

Since p, < a;, from 65 we obtain a; + b; > a; + b;. From 66, a; < p, < a;, and
hence a; < a;. Finally, 67 states that b; + k& > b;. These inequalities together
establish the efficiency conditions 24-27. From corollary 2, the resulting price

(Pa,pv) = (aj + bj — b;,b; + k) is a minimal CE price (note that b; > b;).

3. If 0 ¢ Dj(p+1) and B € Dj(p+ 1), then the auction stops. Item A is allocated to
bidder ¢, and item B is allocated to bidder j at prices p, = pp = p+ 1. To show that
this allocation is efficient, we note that since B € D;(p + 1), then:

bj

v

p+1 (68)
k=p+1 (69)

_l’_

a;

From 58 and 59, we know that a; > p+ 1 and b; + k = p + 1. Hence, b; > b; + K,
and a; > a; + k, which shows that the conditions 28-32 holds, i.e., the resulting
allocation is efficient. From corollary 2, the resulting price (pq,p) = (a; + k, b; + k)

is the minimal CE price.
This exhausts all possible honest bidding scenarios for n = 2. O

Unfortunately, the desirable properties of the exact SIMEA do not generalize to the
case of more than two bidders if no additional constraints are imposed on the range of
values of the complementarity term k.> The following example demonstrates that with
more than two bidders, n > 2, the exact SIMEA mechanism may lead to inefficient

allocations and prices out of equilibrium range.

Example 1 Let there be three bidders, n = 3, and let a; = by = 20, as = 36, by = 0,
a3z = bg = 16, and k = 20. Hence it is efficient to allocate both items to bidder 1; from 7-9,

5This is in spite of the fact that the properties of bidder demands as given in lemmas 1-2 and corollary 4
apply irrespective of the number of bidders.
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Pa Pb maxSi(p) Di(p) maxSy(p) Da(p) maxSs(p) Ds(p) O(p)

0 0 60 AB 56  AB 52 AB AB
20 20 20 AB 16 A,AB 12 AB AB
21 21 18  AB 15 A 10 AB AB
26 26 8 AB 10 A 0 AB,J A
27 26 7  AB 9 A 0 0 A
34 26 0 AB# 2 A 0 ] 0

Table 1: An example of failure of the exact SIMEA mechanism to reach a competitive
equilibrium outcome with three bidders.

the set of CE prices is given by:

56 < pa+p, < 60 (70)
36 < p, < 40 (71)
16 < pp < 40 (72)

Consider the bidding dynamics under the exact mechanism as illustrated in table 1.
All three bidders will initially demand package AB only, and therefore the prices will rise
on both items simultaneously. At p, = pp = 20, bidder 2 switches his demand from AB to
A: S3(AB;p) = S3(A;p) = 16. However, bidders 1 and 3 keep demanding AB only, and
hence the prices rise on both items until they reach p, = pp = 26. At this point bidder 3
reports O € D3(p), given S3(AB;p) = S5(0;p) = 0, and the price of B stops rising. Now
bidder 1 demands AB, and bidder 2 demands A, hence the price of A keeps rising until
the prices reach the level of p, = 34, p, = 26. At this point S1(AB;p) = S1(0;p) = 0,
and bidder 1 reports 0 € D1(p); bidder 2 still demands A, with Sy(A;p) = 2. Hence the
auction stops with item A allocated to bidder 2, and item B not allocated; the resulting

prices, (pq, pp) = (34,26), are out of the equilibrium range: p, < 36.

However, we can show that in the case of a large complementarity, k& > v, the exact

mechanism performs well with any number of bidders. We first observe the following:

Lemma 3 Suppose the complementarity is large, k > ©v. Then, in the exact SIMEA
mechanism, honest bidders never bid on individual items. That is, for any bidder i € N,

for any price p that may result from honest bidding, D;(p) C {AB,0}.

Proof As before, we observe that all bidders will initially demand the package AB only,
and therefore the prices will rise on both items simultaneously. Let ¢ be the last iteration

when all bidders demand AB only; let the corresponding price be p, = p} = p. From 15,

14



we obtain b; +k > p for all i € N. Suppose some bidder ¢ demands A when the prices rise
to (p+1). Then, from 17-18:

a; > p+1 (73)
bi+k<p+1. (74)

Hence, a; > b; + k > k > v, a contradiction. O

Further, from corollary 1, we know that when k > ©, packaging of items is always
efficient, and the minimal equilibrium price is equal to the Vickrey price for the package.

Hence we obtain:

Proposition 3 Suppose the complementarity is large, k > ©v. Then for any number of
bidders, n > 2, honest bidding under the exact SIMEA mechanism leads to an efficient

allocation and minimal CE prices:

Pa = Db = Pup" /2.

4 Features of the approximate SIMEA meachanism under
honest bidding

The approximate SIMEA mechanism is similar to an English-type open outcry auction, run
simultaneously for both goods. It is completely analogous to the approximate mechanism
in DGS (1986), except that bidders may bid for more than one item at any given time. As
in the “exact” mechanism, the auction starts with an initial price vector (p%, p) = (0,0)
announced by the auctioneer. At this point any bidder may bid for any item or items,
which means she commits herself to possibly buying the items at the announced prices;
the items are temporarily assigned to this bidder. Then any uncommitted bidder may (i)
bid for some unassigned item(s), in which case she becomes committed to them at their
initial prices; (ii) she may bid for assigned items, in which case she becomes committed
to them, and their prices increase by a fixed amount § each; or (iii) she may drop out of
the bidding. The auction stops when there are no more uncommitted bidders, at which
point each committed bidder buys the items assigned to her at their current prices (see
also DGS, p. 867).6

DGS show that in their setting, the approximate mechanism leads to prices arbitrary

close to the minimal equilibrium prices, provided that the bid increment § is set small

5This mechanism is also analogous to the simultaneous ascending bid auction described by BL (1999),
except that the bidders here are constrained to bid up by a fixed increment J.
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enough. We demonstrate that generally this is no longer true for our setting. In the
presence of complementarities, the approximate mechanism occasionally suffers from an
exposure problem (Bykowsky et al., 2000), which may lead to prices above the competitive
equilibrium levels, bidder losses, and inefficient allocations. However, we show that this
can never happen when complementarities are large, £ > v. Further, the results of our nu-
merical simulations indicate that even with moderate complementarities, the occurrences
of bidder losses are rare, and in most cases the approximate mechanism leads to efficient
allocations and prices close to the minimal CE prices.

The exposure problem arises under the approximate mechanism because, unlike the
exact mechanism, as part of the procedure bidders have to commit themselves to possibly
buying the items at the announced prices. In the presence of complementarities, a bidder
often needs to bid above the stand-alone value of objects to obtain the package, which
may lead to “mutually destructive bidding” and generate losses when the desired packages
do not materialize (Bykowsky et al., 2000; Kagel and Levin, 2001).7

Bykowsky et al. discuss two types of problems that may arise in environments with
complementarities under simple (non-combinatorial) auction procedures similar to the
approximate mechanism. First, if bidders have to bid above items’ stand-alone values to
obtain packages, they may drop out of bidding early due to the fear losses, and the efficient
equilibrium may not be reached. However, this is not a problem if bidders are not afraid
of financial exposure (in particular, if they bid honestly). Second, in some environments
the competitive equilibrium may not exist at all, and it may be impossible to reach an
efficient allocations via a non-combinatorial auction without inflicting losses on bidders.
In our setting, the first problem is ruled out because we assume that bidders bid honestly
and therefore do not suffer from loss avoidance; the second problem is ruled out because
the competitive equilibrium exists (proposition 1). However, we show that even when the
competitive equilibrium exists and bidders bid honestly, the approximate mechanism may

lead to prices above the CE levels and bidder losses.

Example 2 Consider the following example. Let there be two bidders, n = 2, and
let a1 = 21, by = 64, as = 20, b = 99, and k = 30. Efficiency prescribes allocating
both items to bidder 2; the minimal CE prices are given by: p, € [21,50], p, € [65,94],
with p, = 115 — p,, and the maximal CE prices are p, € [21,50], pp € [90,119], with
pp = 140 — p,. Consider the bidding dynamics under the approximate mechanism with

the bid increment § = 1. Here we assume that bidders bid in the most aggressive manner

"Kagel and Levin find that the exposure problem is quite strong in experimental ascending auctions
with homogeneous goods and variable complementarities. Kwasnica and Sherstyuk (2000) do not observe
bidder losses in their experimental markets with common complementarities, but they report significant
underbidding which may be due to the fear of such losses.
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round  p,  pp pa My bidder S(AB) S(A) S(B) S(#) BidA BidB
1 0 0O 0 O 1 113 20 63 0 yes yes
o 1 1 1 1 2 145 18 97 0  yes  yes
3 2 2 2 2 1 109 18 61 0 yes yes
4 3 3 1 1 2 141 16 95 0 yes yes
20 19 19 1 1 2 109 0 79 0 yes yes
21 20 20 2 2 1 73 0 43 0 yes yes
2 21 21 1 1 2 105 2 7 0 ves yes
23 22 22 2 2 1 69 -2 41 0 yes yes
48 47 47 1 1 2 53 -28 51 0 yes yes
49 48 48 2 2 1 17 -28 15 0 yes yes
50 49 49 1 1 2 49 -30 49 0 yes yes
51 50 50 2 2 1 13 -30 13 0 yes yes
52 51 51 1 1 2 45 -32 47 0 no yes
53 51 52 1 2 1 11 -30 n/a n/a  holds yes
54 51 53 1 1 2 43 -32 45 0 no yes
63 51 62 1 2 1 1 -30 n/a n/a holds yes
64 51 63 1 1 2 33 -32 35 0 no yes
65 51 64 1 2 1 -1 -30 n/a n/a  holds yes
66 51 65 1 1 2 31 -32 33 0 no yes
92 51 91 1 1 2 ) -32 7 0 no yes
93 51 92 1 2 1 29  -30 n/a n/a  holds yes
94 51 93 1 1 2 3 -32 ) 0 no yes
95 51 94 1 2 1 -31  -30* n/a n/a holds* no
96 51* 94* 1 2 2 3 n/a 5% n/a no holds*

Table 2: An example of bidder loss under honest bidding in the approximate mechanism.
Bidder values are a; = 21, by = 64, as = 20, by = 99, and k£ = 30.

consistent with honest bidding, i.e., they bid on both A and B whenever AB is in their
demand set. However, it is easy to check that the bidding dynamics and the resulting
prices and allocations would stay essentially the same if bidders bid less aggressively (i.e.,
bid on an individual item whenever the item and the package are both in the demand
set), or the bid increment is reduced (e.g., 6 = 0.5 or § = 0.1). The bidding dynamics is
illustrated in table 2. Since under the approximate mechanism the two bidders will take
turns bidding, the bidding may be described in rounds. For each round, the table shows
the current prices, p, and py; assignments, j, and 1°; the bidder whose turn it is to bid;
this bidder’s resulting surpluses from each package if she acquires this package; and the

bidder’s decision whether to bid or not on each item (“holds” indicates that the bidder is

811a = pp = 0 in the first round indicates that both items are initially unassigned; ., = 4 in the later
rounds indicates that item v is currently assigned to bidder i.
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currently committed to the item).

The bidding starts with both bidders bidding for both items in pursuit of the package
AB; the prices increase accordingly. Note that the bidders continue bidding in this way
even when the price of one of the items, A, exceeds its stand-alone value (rounds 23 and
22, for bidders 1 and 2, respectively), and bidders become exposed to financial losses.
At round 52, the prices reach the levels where bidder 2 finds most profitable bidding on
item B only (S2(B) = 47 > 45 = S3(AB)); she therefore drops out of bidding on A.
Bidders 1 then appears “stuck” with A, and keeps on bidding on B in an attempt first to
avoid the loss from holding A alone (rounds 53-63), and later to minimize the loss from
packages he may be committed to buy (rounds 65-93). The auction stops at round 95
when the price of B rises to the level where buying AB for bidder 1 would mean even a
greater loss of 31 than the loss of 30 from holding A alone. The resulting prices, bidder
surpluses and allocations are marked with asterisks in the table. We note that the prices
exceed the CE prices, pg + pp = 51 4+ 94 = 145 > 140, the joint bidder surplus is negative,
S1(B) + S3(A) = 5 — 30 = —25, and the resulting allocation is inefficient: bidder 1 buys
item A, and bidder 2 buys item B.

It therefore appears that the exposure problem may be quite severe even in a simple
two-object two-bidder setting with common additive complementarity. However, we note
the following. First, the reasoning behind Lemma 3 and Proposition 3 fully applies to
the approximate mechanism, and hence we obtain that when complementarities are large,
k > v, the exposure problem never emerges, and the approximate mechanism leads to
prices essentially equal to the minimal CE price.” Further, results of our numerical simu-
lations indicate that even when the complementarity is moderate, 0 < k < ¥, the exposure
problem emerges quite rarely. Table 3 reports the results of numerical simulations of hon-
est bidding with two bidders and the bid increment 6 = 1 when bidder values are drawn
independently from the uniform distribution, v; ~ U[0, 100], for k£ € {10, 20, ...,90, 101}.
For every value of k, the resulting prices, on average, are very close to the minimal CE
price; over 90% of allocations are efficient. The maximal price deviation and maximal
bidder loss never exceed the value of the complementarity term k, and the exposure prob-
lem is the most noticable, both in terms of frequency and the size of bidder losses, when

complementarities are small to intermediate in values, 30 < k < 50.10  Additional nu-

9BL show that with large complementarities, the honest bidding strategy profile forms a PBE in the
simultaneous ascending bid auction; this leads to an efficient allocation and Vickrey price for the package.
See also footnote 2.

10The latter observation is interesting in relation to the discussion of the exposure problem in FCC
auctions. Ausubel et al. (1997) argue that the exposure problem in FCC auctions was not severe since
the synergiesies were small. We find that in our setting, the exposure problem is most likely to surface
precisely in the case of small to moderate synergies.
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number % efficient Price deviation from minCE % obs. Max loss

k of obs. allocations mean min max with losses per bidder
10 1000 95.5 1.09 -1 10 4.8 10
20 1000 92.8 1.42 -1 20 7.6 20
30 1000 93.3 1.31 -1 30 6.8 30
40 1000 93.6 .17 -1 34 6.1 34
50 1000 95.1 1.22 -1 32 5.3 32
60 1000 97.6 0.74 -1 31 2.2 31
70 1000 98.3 0.66 -1 14 1.4 14
80 1000 99.3 0.5 -1 9 0.3 9
90 1000 99.4 0.49 -1 6 0.1 6
101 1000 99.5 0.44 -1 2 0 0

Table 3: Results of numerical simulations of the approximate mechanism with two honest
bidders. Bidder values are drawn from the uniform distribution on [0, 100].

merical simulations conducted with five bidders indicate that increasing the number of
bidders neither aggravates nor eliminates the problem. It appears that the disequilibrium
problems of the SIMEA mechanisms manifest themselves quite infrequently, and, overall,

the mechanisms perform quite well in terms of both prices and efficiency.

5 Conclusions

We have demonstrated that the competitive equilibrium exists in a simple class of envi-
ronments with two indivisible objects and a common additive complementarity in bidder
valuations between the objects. This raises an interesting question on whether the equi-
librium existence may be established in a more general framework with positive comple-
mentarities. An obvious way to proceed is to allow a certain degree of variability in the
complementarity term across bidders (as in BL), and to further generalize the setting to
more than two objects. Such generalizations lead to quite complex problems which are
beyond the scope of this paper.

We have also investigated to what extent simple non-combinatorial auctions may be
able to implement competitive equilibrium outcomes in environments with common addi-
tive complementarity if bidders follow honest bidding rules. Here our findings generally
support the viewpoint that applicability of such mechanisms in environments with com-
plementarities is limited. A variation of the simultaneous English auction mechanism
will lead to a competitive equilibrium outcome if there are only two bidders, or if the
complementarity between objects is large enough to ensure that package bidding always
dominates bidding for individual objects. However, in more general cases such auction
may occasionally result in disequilibrium prices and allocations. Even though our nu-

merical simulations indicate that such disequilibrium outcomes may be quite rare, the

19



simultaneous English auction mechanism is not guaranteed to perform well in every case.

Further, the problems may become more severe in more general environments. Our results

therefore suggest that simultaneous English auctions may be used in environments with

complementarities if simplicity of the auction is a major concern and occasional failures of

the mechanism are admissible. In situations where achieving the efficient equilibrium out-

come is critical, mechanism designers should turn to more complex combinatorial auctions

that would allow for package bidding (such as in Bykowsky et al., 2000).
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