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Abstract

We study the problem of assigning a set of objects (i.e., indivisible
goods) to a set of agents, when each agent is supposed to receive only
one object and has strict preferences over the objects. In the absence of
monetary transfers, we focus on the probabilistic rules, which only take
the ordinal preferences as input (the ordering over objects by each agent is
submitted, but the relative cardinal intensities of their preferences are not).

We present a characterization of the serial rule, proposed by Bogomol-
naia and Moulin (2001) in this model. The serial rule is the only rule
satisfying sd efficiency, sd no-envy, and bounded invariance (where “sd”
stands for “stochastic dominance”). A special representation of feasible
assignment matrices by means of consumption processes is the key to the
simple and intuitive proof of our main result. This technique also allows us
to present a simple unifying argument for a number of related earlier and
concurrent results.
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1 Introduction

We study the problem of assigning a set of “objects” (i.e., indivisible goods) to a
set of agents, when each agent is to receive only one object and has strict prefer-
ences over the objects. In the absence of monetary transfers, randomization is the
method of choice to guarantee fairness. An extensive recent literature, starting
from Bogomolnaia and Moulin (2001), is devoted to the study of probabilistic as-
signment rules in this setting. Earlier work (see Hylland and Zeckhauser (1979),
Zhou (1990)) assumed that agents announce their cardinal preferences. The re-
cent literature considers ordinal rules, which only take agents’ rankings over the
objects as input.

The classical random priority rule orders agents using a uniform lottery, and
lets them pick their most preferred objects in that order. An alternative is the
“serial rule (S),” introduced by Bogomolnaia and Moulin (2001). The rule is
described by means of a “simultaneous eating” algorithm. Agents acquire proba-
bilities of objects continuously over the unit interval of time [0, 1], simultaneously
and at the same unit rate. Given a preference profile R, each agent starts with his
most preferred object. When the object he consumes is exhausted, he switches
to his next most preferred object among the ones that are still available. At each
τ ∈ [0, 1], S(R)[τ ] is a partial serial assignment that agents have acquired by τ .
The final assignment S(R) = S(R)[1] is given by vectors of probabilities agents
have consumed.

The restriction to ordinal input calls for first order stochastic dominance as a
way to compare assignments. Given agent i’s ordinal preferences, one assignment
(vector of probabilities receiving different objects) weakly dominates another for
agent i, if and only if, for each object a, the total probability of his receiving
objects that he prefers to a is at least as large under the first assignment as under
the second.1 In this spirit, Bogomolnaia and Moulin (2001) define two natural
requirements on a probabilistic assignment. “Sd efficiency”2 requires that no other
assignment weakly dominates the given one for all agents. “Sd no-envy” requires
for each agent’s assignment to dominate, in his opinion, the assignment of any
other agent.

The serial rule fares better than the random priority rule in that it satisfies sd

1This is equivalent to saying that an agent with any vNM index, consistent with announced
ordinal ordering, finds the first assignment at least as desirable as the second (i.e. has at least
as large expected utility at the first one as at the second). Thus, if the first assignment weakly
dominates the second, the agent always prefers the first, or at least feels indifferent between
them. If neither dominates another, then agents with some vNM indices would prefer the first
to the second, while agents with some other vNM indices would prefer the second.

2For short, we use the prefix “sd” for stochastic dominance in other expressions below. In
Bogomolnaia and Moulin (2001), this requirement is referred to as “ordinal efficiency.” In this
paper, we adopt the terminology and the notation of Thomson (2010).
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efficiency and sd no-envy, neither one of which is satisfied by the random priority
rule, though those properties do not pin it down (see Remark in Section 3).3

Much work has been done over the last decade on probabilistic rules that
only take ordinal preferences as input. The serial rule occupies a central place in
this literature. However, until recently, its axiomatic characterization had been
elusive. This paper proposes such a characterization, by means of sd efficiency,
sd no-envy, and an axiom, which we call “bounded invariance”. This last requires
that, whenever the preferences of one agent change so that the ranking over his
upper counter set of an object, say a, remains the same, the probability share
of a assigned to each agent remains the same. We show that this characterization
holds even under weaker requirements. Moreover, we introduce a new, simple,
and intuitive proof technique, which allows us to easily obtain an array of related
characterizations.

The key to our result is a special representation of assignment matrices by
means of “consumption processes”. This representation is introduced by Heo
(2010) as “preference-decreasing consumption schedules”: each assignment ma-
trix P is represented as the output of a process along which agents continuously
acquire probabilities of objects over the unit interval of time, [0, 1]. It mimics
the simultaneous eating algorithm: each agent consumes probabilities of objects
at unit speed in decreasing order of his preferences. However, each agent may
switch from one object to another even when the former object is not yet ex-
hausted. Agent i ends consuming an object, say a, exactly when she acquires the
probability pia, given by Pi. We represent this process by (P [τ ])τ∈[0,1]. Given a
rule satisfying the properties that we impose, we compare the simultaneous eat-
ing algorithm with the consumption processes representing assignment matrices
selected by the rule. By imposing our properties, we obtain that the assignment
matrix selected by the rule should coincide with the assignment matrix selected
by the serial rule.

Three recent papers are closely related to the current manuscript. Heo (2010)
provides a characterization of the serial rule by means of sd efficiency, “sd equal-
division lower bound,” “limited invariance,” and “consistency,” an axiom pertain-
ing to variable populations.4 Independently, Kesten et al. (2010) were the first
to characterize the rule by means of sd efficiency, sd no-envy, and one additional
invariance axiom, which they call “upper invariance”.5 Independently and con-

3On some restricted preference domains, however, the two properties characterize the serial
rule. See Bogomolnaia and Moulin (2002) and Liu and Pycia (2011).

4This paper characterizes a generalized version of the serial rule when each agent receives
possibly more than one object; our setting is a special case in which each agent receives only
one object. We discuss this generalization in Section 4.

5Our paper combines independent efforts of current authors. Heo formulated a weaker invari-
ance axiom than upper invariance and derived the result that is the main result of the current
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currently, Hashimoto and Hirata (2011) formulated another invariance axiom for
a different domain on which the “null object”6 exists. Applying our result di-
rectly to the variants of the model in which several copies of objects may exist, or
agents could receive the null object, we obtain these characterizations as corollar-
ies, given that our invariance axiom implies theirs. The studies by Kesten et al.
(2010) and Hashimoto and Hirata (2011) contain two additional characterizations
that do not invoke invariance axioms and are distinct from ours (Theorem 1 in
Kesten et al. (2010) and Theorem 3 in Hashimoto and Hirata (2011)). After we
became aware of these results, we found that our proof technique also allows us
to obtain straightforward proofs of these results.7

The paper is organized as follows. We describe the model, notation, and
axioms in Section 2. We present our main result in Section 3. We show how all
the related results, mentioned above, can be unified using our proof technique in
Section 4 (we relegate a short argument, needed for one case, to the appendix).

2 Model

Let A = {o1, . . . , on} be a set of objects and N = {1, 2, . . . , n} a set of agents.8

Each i ∈ N has a strict preference Ri over A. Let R be the set of all such
preferences. Let R = (Ri)i∈N ∈ RN be the preference profile. For each i ∈ N and
each Ri ∈ R and each a ∈ A, denote by U0(Ri, a) = {b ∈ A : b Ri a} the strict
upper contour set of Ri at a, and by U(Ri, a) = U0(Ri, a)∪{a} the (weak) upper
contour set of Ri at a. For each S ⊆ A, let Ri|S be the preference Ri restricted
to S. For each a ∈ A, let Ri(a) ≡ Ri|U(Ri,a), that is, the preference Ri restricted
to U(Ri, a).

A probabilistic assignment matrix is an |N |× |A| matrix P = (pia)i∈N,a∈A
where pia is the probability that agent i receives object a. Let Pi be the row of
the probabilities of agent i receiving the various objects and let P a be the column
of the probabilities of object a being assigned to the various agents. We refer to

paper, exploiting a proof technique initiated in her earlier work (Heo, 2010). Bogomolnaia in-
dependently improved on a result in Kesten et al. (2010) by invoking the same axioms as Heo,
and developing a simpler proof.

6The null object is defined as receiving no object.
7We recently became aware that, as a latest development of their line of work, Hashimoto

and Hirata (2011) and Kesten et al. (2010) are merging their efforts, proving more general
characterization (Hashimoto et al., 2012). They impose limited invariance of Heo (2010) in
place of upper invariance.

8In the main body of the paper, we assume that |A| = |N | and all objects are different and
acceptable. One can think of the null object as being there but being always ranked last. We
extend our results to several generalized environments in Section 4. However, we concentrate
on the simplest model both to sharpen the clarity of exposition and to obtain a characterization
on the smallest domain.
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the vector Pi as “agent i’s assignment” at P .
A probabilistic assignment matrix P is feasible if and only if it is bistochas-

tic, i.e. (i) for each i ∈ N and each a ∈ A, pia ∈ [0, 1], (ii)
∑

i∈N pia = 1,
and (iii)

∑
a∈A pia = 1. By the Birkhoff-von Neumann theorem (Birkhoff (1946),

von Neumann (1953)), each bistochastic matrix can be represented as a convex
combination of permutation matrices,9 i.e., as a probability distribution over de-
terministic assignments. Let P be the set of all feasible assignment matrices. A
rule is a mapping from RN to P . Denote a generic rule by ϕ.

2.1 Axioms

The rules that we study only take rankings over objects as input. We compare
an agent’s assignments by means of first order stochastic dominance. Let Ri be
agent i’s preference and Pi, Qi be two assignments for agent i. We say that Pi

weakly stochastically dominates Qi at Ri, which we write as Pi R
sd
i Qi, if

for each a ∈ A,
∑

b∈U(Ri,a)

pib ≥
∑

b∈U(Ri,a)

qib.

The following are two important properties of assignment matrices. Let R be
a preference profile and P an assignment matrix. We say that P is sd efficient
at R if there is no other feasible assignment matrix Q such that for each i ∈ N ,
Qi R

sd
i Pi and P 6= Q. We say that P is sd envy-free at R if for each pair

i, j ∈ N , Pi R
sd
i Pj. Our first two axioms are that for each preference profile,

the assignment matrix determined by a rule should satisfy these efficiency and
fairness properties. They are standard in our model. The serial rule satisfies both
of them (Bogomolnaia and Moulin, 2001).

Sd efficiency: For each R ∈ RN , ϕ(R) is sd efficient at R.

Sd no-envy: For each R ∈ RN , ϕ(R) is sd envy-free at R.

We now introduce a third axiom, which is new. It is an invariance requirement.
It restricts how a rule reacts to changes in the preferences of a single agent.
Suppose that the preference of an agent changes but his ranking above a certain
object, say a, remains the same. We require that this change should not affect
the probability share of a assigned to each agent.10

9P is a permutation matrix if P ∈ P and for each agent i and each object a, pia ∈ {0, 1}.
10A requirement in the spirit of bounded invariance has also been formulated in the proba-

bilistic voting model (Gibbard, 1977). When each assignment matrix is viewed as a collective
decision, the requirement can be rephrased as follows. Given other agents’ preferences, suppose
that an agent’s preference changes but his upper contour set at an object, say a, remains the
same. Then, the total probability assigned to objects in this upper contour set should remain
the same for each agent. It is obvious that this requirement implies our bounded invariance.
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Bounded invariance: For each R ∈ RN , each i ∈ N , each a ∈ A, and each
R′i ∈ R, if Ri(a) = R′i(a), then for each j ∈ N , ϕja(R) = ϕja(R

′
i, R−i).

11

2.2 Consumption Process

Next, we define an alternative representation of an assignment matrix by means
of “consumption process”. This idea is introduced by Heo (2010) under the name
of “preference decreasing consumption schedule”. It is the key to the simple proof
of our main result.12

Let R ∈ RN and P ∈ P . We interpret the assignment matrix P as the output
of a specific consumption process over the time interval [0, 1]. Each agent, say i,
consumes probabilities at unit speed in decreasing order of his preferences. He
starts by consuming his most preferred object, say a, at time 0, and switches to
his second most preferred object, say b, at time pia. Then, he switches to his third
most preferred object at time pia + pib, and so on. The time interval during which
he consumes each object o is exactly the probability pio, given by Pi.

Let R ∈ RN . At each time τ ∈ [0, 1], we define P [τ ] as an |N | × |A| matrix
representing the partial assignment of P that is “acquired” by time τ , given the
consumption process described above. In particular, P [0] is a zero matrix, while
P [1] = P . The consumption process representing P is denoted by (P [τ ])τ∈[0,1]. Let
Pi[τ ] = (P [τ ])i be what has been acquired by agent i at time τ in the consumption
process representing P .

For each R ∈ RN , the assignment matrix selected by the serial rule, S(R),
is obtained by a similar algorithm. There is no assignment matrix that specifies
the consumption process to begin with. Instead, each agent consumes probabil-
ities of objects in decreasing order of his preferences. He starts from his most
preferred object and consumes it as long as it is available. Whenever an object
he consumes is exhausted, he switches to his best object among the ones that
are still available.13 For each τ ∈ [0, 1], we denote by S(R)[τ ] the corresponding
partial serial assignment by time τ . The defining property of consumption process
representing S(R) is that at each time, each agent consumes his most preferred
object among the ones that are still available.

Note that the consumption process is continuous in τ and piece-wise linear:
it has only a finite number of “switches” (at most n(n − 1)), when some agent
changes from one object to another. The following two lemmas are immediate.

Lemma 1 The total probability of agent i receiving objects at least as desirable
as object a, is the time at which he ends consuming a in the consumption process.

11It is easy to see that this property is equivalent to a seemingly stronger one, demanding
that for each o ∈ U(Ri, a) and each j ∈ N , ϕjo(R) = ϕjo(R′i, R−i).

12See Heo (2010) for an extensive discussion and related notion.
13Note that in our algorithm several agents can consume an object simultaneously.
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Lemma 2 Let R be a preference profile and P and Q be two assignment
matrices. Suppose that, for some t ∈ [0, 1], Pi[t] = Qi[t]. Then, for each
τ < t, Pi[τ ] = Qi[τ ]. In particular, P [t] = Q[t] implies that for each τ ∈ [0, t],
P [τ ] = Q[τ ].

Lemma 2 is a straightforward generalization of the fact that, given P ∈ P ,
the corresponding consumption process is uniquely determined. It states that,
given a partial assignment P [t], the corresponding part of consumption process
leading to this partial assignment, i.e. P [τ ], τ ∈ [0, t], is uniquely determined.

Let R ∈ RN and P ∈ P . Define t(R) to be the largest τ ∈ [0, 1] such that
P [τ ] = S(R)[τ ].14 We say that the consumption processes representing P and
S(R) “diverge” at time t(R). Let us call t(R) the “divergence time” between P
and S(R).

Suppose that P 6= S(R) and thus, t(R) < 1. By Lemma 2, for each τ ∈
[0, t(R)], P [τ ] = S(R)[τ ] and for each τ > t(R), there is i ∈ N such that Pi[τ ] 6=
Si(R)[τ ]. Note that the sets of objects that are still available at t(R) are the same
in both consumption processes. In the consumption process representing S(R),
agent i switches at t(R) to an object, say a, which he prefers to each other available
object. In the consumption process representing P , however, he switches to an
object other than a (thus, less desirable than a). That is, he consumes an object
that is less desirable than a before a is exhausted. We say that such an agent i
does not do his best on a at t. We state this observation as the following
Lemma.

Lemma 3 Let R ∈ RN . The serial assignment matrix S(R) is the only as-
signment matrix such that, for each a ∈ A, up to the time at which a is exhausted
in the consumption process, each agent consumes objects that he finds at least as
desirable as a.

Given a rule ϕ, define tϕ(R) to be the divergence time between ϕ(R) and S(R).
Lemma 3 allows us to immediately obtain a characterization of the serial rule,

proposed by Kesten et al. (2010), by means of the following axiom.

Ordinal fairness: For each R ∈ RN , each pair i, j ∈ N , and each a ∈ A with
ϕja(R) > 0, we have

∑
b∈U(Rj ,a)

ϕjb(R) ≤
∑

b∈U(Ri,a)
ϕib(R).

Theorem 1 (Kesten et al. (2010)) The serial rule is the only rule satisfying
ordinal fairness.

Proof Let ϕ be an ordinally fair rule failing the premises of Lemma 3. This
means that there is an object, say a, which is exhausted at some t ∈ (0, 1], but

14Continuity of the consumption processes, together with Lemma 2, implies that {τ ∈ [0, 1] :
P [τ ] = S(R)[τ ]} is a compact interval [0, t(R)] ⊆ [0, 1].
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an agent, say i, starts consuming an object he ranks below a before t. Let j
be an agent who ends consuming a positive share of a at t. By Lemma 1,∑

b∈U(Rj ,a)
ϕjb(R) = t and

∑
b∈U(Ri,a)

ϕib(R) < t, a violation of ordinal fairness.15

�

3 Main Result

Our main result is a characterization of the serial rule.

Theorem 2 The serial rule is the only rule satisfying sd efficiency, sd no-envy,
and bounded invariance.

Proof The serial rule satisfies sd efficiency and sd no-envy (Bogomolnaia and
Moulin, 2001). To check bounded invariance, consider the following:

Claim 1. Let R ∈ RN and t ∈ [0, 1]. Let i ∈ N and d ∈ A be such that
for each object o ranked below d, (S(R)[t])io = 0. Let R′i ∈ R be such that
Ri(d) = R′i(d). Then, for each τ ∈ [0, t], S(R′i, R−i)[τ ] = S(R)[τ ].

Claim 1 follows from the definition of the serial rule. Indeed, for each time
up to t, each agent consumes his best available object, which remains the same
at both R and (R′i, R−i); before time t, agent i can still consume objects from
U(Ri, d), and nothing changes for the other agents. Bounded invariance readily
follows from Claim 1, by choosing t as the time at which agent i ends consuming a
in the premise of bounded invariance.16

Conversely, let ϕ be a rule satisfying these axioms. Suppose, by contradiction,
that ϕ 6= S. Then, for some R ∈ RN , tϕ(R) < 1. Let R∗ ∈ RN be such that
t ≡ tϕ(R∗) is as small as possible: t = tϕ(R∗) = min

R∈Rn
tϕ(R). Since ϕ 6= S, t < 1.

There exists i ∈ N not doing his best on an object, say a at t. Let a be agent i’s
most preferred object among the ones that are still available at t. Since agent i
never returns to object a after time t, ϕia(R

∗)=(ϕ(R∗)[t])ia. By sd efficiency,
there is j ∈ N \ {i} who consumes a positive share of a at some t′ > t. (Thus,
ϕja(R

∗) > 0.)

15Since we assume that |A| = |N |, ordinal fairness itself characterizes the serial rule. Suppose
that for each object a, there are qa copies of a and

∑
a∈A qa ≥ |N | as in Kesten et al. (2010).

Then, ordinal fairness, together with the following axiom, characterizes the same rule.
Non-wastefulness: For each R ∈ RN , each i ∈ N , and each b ∈ A with ϕib(R) > 0, if aRib,

then
∑

k∈N ϕka(R) = qa.
The proof starts in the same way as above, but we also need to consider the case when object a

is never exhausted. In this case, if some agent i ever consumes an object worse for him than a,
non-wastefulness is violated.

16or as the earliest time at which agent i starts consuming a positive share of an object less
preferred than a.
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Let Aj = U(R∗j , a)\U(R∗i , a) and Aij = U(R∗j , a) ∪ U(R∗i , a). By sd efficiency,
for each o ∈ Aj, ϕio(R∗) = 0. Otherwise, agents i and j can improve their welfare
by exchanging a fraction of these objects and a. Thus,

∑
o∈Aij

ϕio(R
∗) = t.

Let R′i ∈ R be such that R∗i (a) = R′i(a) and the objects in Aj are pushed
upward to be placed just below a. Let R′ = (R′i, R

∗
−i).

Since t is chosen as the earliest divergence time between ϕ(R) and S(R) across
all R ∈ RN , we have that for each τ ≤ t, ϕ(R′)[τ ] = S(R′)[τ ]. By Claim 1,
S(R′)[τ ] = S(R∗)[τ ]. Hence, ϕ(R′)[τ ] = ϕ(R∗)[τ ].

By bounded invariance, ϕja(R
′) = ϕja(R

∗) > 0. Recall that in the consump-
tion process representing ϕ(R∗), agent j acquires a positive share of a at some
t′ > t. Since ϕj(R

′)[t] = ϕj(R
∗)[t], in the consumption process representing ϕ(R′),

agent j also acquires a positive share of a at some t′′ > t. By Lemma 1, agent j’s
total share of Aij at ϕ(R′) is at least t′′ > t.

Since ϕja(R
′) = ϕja(R

∗) > 0, sd efficiency implies that for each o ∈ Aj,
ϕio(R

′) = 0. By bounded invariance, for each o ∈ U(R∗i , a), ϕio(R
′) = ϕio(R

∗).
Hence, agent i’s total share of Aij at ϕ(R′) is t. Recall that Aij constitutes the
“top” part of R′i. However, his total share of Aij, t, is smaller than the total share
of Aij that agent j receives, t′′, a contradiction to sd no-envy. �

Remark We check that our axioms are independent. Let N = {1, 2, · · · , n}
with n ≥ 3 and A = {a, b, c, · · · , z} with |A| = n. Let R ∈ RN be such that
(i) a R1 b R1 c R1 · · · , a R2 c R2 b R2 · · · , b R3 c R3 a R3 · · · , and (ii) the most
preferred object of each agent in N \ {1, 2, 3} is in A \ {a, b, c} and is different
from that of each other agent in N \ {1, 2, 3}. Let P ∈ P be such that P1 =
(1/2, 1/6, 1/3, 0, · · · , 0), P2 = (1/2, 0, 1/2, 0, · · · , 0), P3 = (0, 5/6, 1/6, 0, · · · , 0),
and each other agent is assigned probability 1 of receiving his most preferred
object. Let ψ be a rule such that ψ(R) = P and for each R′ 6= R, ψ(R′) = S(R′).
This rule satisfies all of the axioms of Theorem 2 except for bounded invariance.
The equal division rule, assigning 1/n of each object to each agent, satisfies all
of the axioms except for sd efficiency. The sequential priority rule assigning to
agent 1 his best object, to agent 2 his best among remaining objects, and so on,
satisfies all of the axioms except for sd no-envy.

3.1 A Tighter Result

Our characterization still holds under weaker versions of sd efficiency and/or
bounded invariance. First, a weaker notion of efficiency says that (i) no pair of
agents can ever mutually improve their welfare by swapping a fraction of their
assignments and (ii) there is no waste of an object that an agent prefers to some
object in the support of his assignment.
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Weak sd efficiency17: For each R ∈ RN , there is no P ∈ P \ {ϕ(R)} such
that for each i ∈ N , Pi R

sd
i ϕi(R) and |{i ∈ N : Pi 6= ϕi(R)}| ≤ 2.

Next, we weaken bounded invariance. Let P ∈ P , R ∈ RN , i ∈ N , and
R′i ∈ R. Let a ∈ A be such that pia = 0. We say that R′i is a weak monotonic
transformation of Ri at (a, P ) if (i) Ri|A\{a} = R′i|A\{a} and (ii) U(Ri, a) ⊃
U(R′i, a). That is, R′i is obtained from Ri by moving object a, of which agent i
receives zero probability in P, upward in agent i’s ranking.

Weak Monotonicity: Let R ∈ RN , i ∈ N , a ∈ A, and R′i ∈ R be a
weak monotonic transformation of Ri at (a, ϕ(R)). For each k 6= i and each
b ∈ U0(R′i, a), ϕkb(R

′
i, R−i) ≥ ϕkb(R).

Proposition The serial rule is the only rule satisfying weak sd efficiency, sd
no-envy, and weak monotonicity.18

Proof All arguments in the proof of Theorem 2 apply except for a small
change: weak monotonicity now implies ϕja(R

′) ≥ ϕja(R
∗) > 0 and ϕia(R

′) ≤ ϕia(R
∗).

�

4 Unification of Known Results

We conclude by discussing possible generalizations of our model, as well as several
related characterization results.

The first generalization is to introduce (finitely) multiple copies of each ob-
ject.19 The feasibility condition on assignment matrices now requires that the sum
of the probabilities of each object assigned to the agents is at most as large as
the number of copies of this object. Our main result (Theorem 2) applies directly
to this generalized model.

The second one is to introduce the null object, i.e. an option to receive no
object.20 Denote the null object by ∅. We call an object “acceptable” to an agent
if he prefers the object to the null object, and “unacceptable” otherwise. All the

17It is a restatement of “2-ordinal efficiency” axiom in Hashimoto and Hirata (2011).
18Theorem 2 in Hashimoto and Hirata (2011) tightens their Theorem 1 by means of weak sd

efficiency and a weaker notion than sd no-envy. In the version of the model that includes the
null object, which we discuss in Section 4, our proof follows by imposing their weaker fairness
condition.

19Moreover, we relax the assumption |A| = |N | to be such that the total number of objects’
copies is at least as large as the number of agents.

20This variation can be thought of as a subclass of the setting with multiple copies of some
objects. Specifically, this is a subclass where at least one object “∅” exists in |N | copies. Hence,
under any minimal efficiency requirement, each agent never receives a positive probability of
each object that is less preferred than ∅.
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arguments in our main result (Theorem 2) carry over, if only we set the number
of copies of the null object to be |N |.

We now can unify several related characterization results. In Section 2.2, we
already presented an alternative proof of Theorem 1 in Kesten et al. (2010) by us-
ing our proof technique. “Upper invariance” in Theorem 2 in Kesten at al. (2010)
immediately implies bounded invariance: it requires the assignment of an object
to remain unchanged (as in bounded invariance) under a larger class of changes
in a single agent’s preferences. In the presence of sd efficiency, “truncation ro-
bustness”21 from Theorems 1, 2 in Hashimoto and Hirata (2011) is equivalent
to bounded invariance on the class of models with null object which they con-
sider.22,23 Thus, these characterizations follow from ours. Lastly, Theorem 3 in
Hashimoto and Hirata (2011), though the axioms they impose are different in
spirit from ours, can still be easily obtained using our technique (see Appendix
for a very short alternative proof).

Yet another generalization is to accommodate the possibility that each agent
receives more than one object. If agents receive the same number of objects, then
all of the axioms listed in Theorem 2 are still meaningful. Otherwise, however,
it becomes difficult to compare agents’ assignments directly, since the sum of
probabilities assigned to each agent may differ. Heo (2010) introduces the notion
of “normalized” sd no-envy to handle this problem: first normalize each agent’s
assignment by the number of objects that he has to receive, and then compare
his normalized assignment to that of each other agent. The serial rule can also be
generalized to this setting (Heo, 2010). All the arguments in Theorem 2 carry over
with a slight adaptation: the “generalized serial rule” is the only rule satisfying
sd efficiency, normalized sd no-envy, and bounded invariance.

21Truncation robustness requires that, whenever an agent changes his preferences so that each
object below an object, say a, in his ranking becomes unacceptable, each agent’s assignment
of a should remain the same.

22Bounded invariance, introduced in our initial setting, is well-defined with no modification
in this generalized setting. However, truncation robustness is silent in our initial model in which
the null object is always ranked last. This axiom is meaningful only in the richer environment
in which the null object can be ranked anywhere. This is also true for the other critical axioms
in Hashimoto and Hirata (2011), the “Rawlsian criterion” and “independence of unassigned
objects” (we discuss these axioms in Appendix).

23It is obvious that bounded invariance implies truncation robustness. Conversely, we show
that truncation robustness implies bounded invariance. Given R−i, let Ri, R

′
i ∈ R be such that

for an acceptable object at Ri and R′i, say a, Ri(a) = R′i(a). Let R∗i be such that R∗i (a) =
Ri(a) and all objects below a are unacceptable at R∗i . By truncation robustness, each agent’s
assignment of a remains the same at (Ri, R−i) and (R∗i , R−i). Similarly, each agent’s assignment
of a remains the same at (R′i, R−i) and (R∗i , R−i). If a is unacceptable, then let b ∈ A be the
worst acceptable object for agent i. Sd-efficiency guarantees that i receives zero probability of
each object below b at both R and (R′i, R−i). We can then apply the same argument as above
to b instead of a.
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Appendix: an alternative proof

We present here an alternative proof of Theorem 3 in Hashimoto and Hirata (2011),
using consumption processes. Let Ri ∈ R and a ∈ A. We say that R′i ∈ R is ob-
tained from Ri by “sinking” a, if ∅ R′i a and Ri|A\{a} = R′i|A\{a}. We call a ∈ A a
minimally preferred object at R if a is acceptable for at least one agent, and,
for each agent, a is either unacceptable, or the worst among acceptable objects.
Hashimoto and Hirata (2011) introduce two axioms:

Independence of unassigned objects:24 Let R ∈ RN , i ∈ N , and a ∈ A
be such that ϕia(R) = 0. If R′i ∈ R is obtained from Ri by sinking a, then
ϕ(R) = ϕ(R′i, R−i).

Rawlsian criterion:25 Let R ∈ RN and let a be a minimally preferred object
at R. Let R′ ∈ RN be such that for each j ∈ N , R′j is obtained from Rj by
sinking a. Then,

(i) for each b ∈ A \ {a}, ϕb(R) = ϕb(R′), and
(ii) for each P ∈ P such that for each b ∈ A \ {a}, P b = ϕb(R′),

min
j∈N : aRj∅

∑
o∈U0(Rj ,∅)

pjo ≤ min
j∈N : aRj∅

∑
o∈U0(Rj ,∅)

ϕjo(R).

Theorem 3 (Hashimoto and Hirata (2011)) The serial rule is the only
rule satisfying sd efficiency, independence of unassigned objects, and the Rawlsian
criterion.

Proof We omit showing that the serial rule satisfies these axioms. Conversely,
let ϕ be a rule satisfying them. Suppose, by contradiction, that ϕ 6= S. For each
R ∈ RN , let M(R) ≡

∑
i∈N
|{o ∈ A : o Ri ∅}|. Among all R ∈ RN such that

ϕ(R) 6= S(R), choose R∗ so as to minimize M(R), i.e., R∗ = arg min
R∈RN

M(R). Let

t = tϕ(R∗). Since ϕ 6= S, t < 1. Then, there is i ∈ N not doing his best on an
object, say a, at t. Let a be agent i’s most preferred object among the ones that
are still available at t. By sd efficiency, there is j ∈ N \ {i} consuming a positive
share of a at some t′ > t. (Thus, ϕja(R

∗) > 0.)

24Independence of unassigned objects differs from bounded invariance in two respects. First,
its premise is a change of preferences over some “dummy” objects (i.e., objects assigned zero
probability). Second, on the conclusion side, independence of unassigned objects restricts the
whole assignment matrix.

25The Rawlsian criterion is a fairness requirement based on the notion that “the welfare of
an agent is measured by the probability that she receives an acceptable object” as Hashimoto
and Hirata (2011) argue. Moreover, it encompasses an idea of “separability”: each minimally
preferred object should be assigned independently of the other acceptable objects. In spirit, this
axiom is different from that underlying sd no-envy.
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Claim 2. For each (k, b) ∈ N × A such that (k, b) 6= (i, a), ϕkb(R
∗) > 0.

Indeed, suppose that there is (k, b) 6= (i, a) such that ϕkb(R
∗) = 0. Let R′k ∈ R

be obtained from R∗k by sinking b and let R′ = (R′k, R
∗
−k). By independence of

unassigned objects, ϕ(R′) = ϕ(R∗), and agent i still does not do his best on a at t,
that is, ϕ(R′) 6= S(R′). But this is impossible, since M(R′) < M(R∗).

Claim 3. There are no minimally preferred objects at the profile R∗.

Suppose by contradiction that b is a minimally preferred object at R∗. Let
R′ ∈ RN be such that for each k ∈ N , R′k is obtained from R∗k by sinking b. The
Rawlsian criterion gives, for each o 6= b, ϕo(R∗) = ϕo(R′). If b 6= a, agent i still
does not do his best on a at t in the consumption process representing ϕ(R′).
That is, ϕ(R′) 6= S(R′), which contradicts M(R′) < M(R∗). If b = a, a positive
share of ϕja(R

∗) can be transferred to agent i,26 in violation of condition (ii) of
the Rawlsian criterion.

Now, for each k ∈ N , let l(k) be his worst acceptable object at R∗k. By
Claim 3, for each agent k, there is another agent m such that l(k)R∗ml(m). Hence,
we can find a “cycle” of agents (k1, · · · , kr), all distinct except that k1 = kr,
and such that for each 2 ≤ s ≤ r, l(ks−1)R

∗
ks
l(ks). Suppose that for each

s ∈ {1, · · · , r}, (ks, l(ks)) 6= (i, a). Then, by Claim 2, for each s ∈ {1, · · · , r},
ϕksl(ks)(R

∗) > 0, and we obtain a violation of sd efficiency. Thus, for some
s ∈ {1, · · · , r}, (ks, l(ks)) = (i, a) and ϕia(R

∗) = 0. Without loss of generality,
let i = kr. Recall that ϕ(R∗)[t] = S(R∗)[t] and a is the most preferred ob-
ject for agent kr(= i) among the ones that are still available at time t. Since
l(kr−1) Rkr l(kr)(= a), object l(kr−1) is exhausted no later than t.

Next, l(kr−2) Rkr−1 l(kr−1) and, by Claim 2, ϕkr−1l(kr−1)(R
∗) > 0. Object

l(kr−1) is exhausted at t, and for each τ ≤ t, the partial assignment ϕ(R∗)[τ ]
is the same as that of the serial rule. Hence, l(kr−2) is exhausted earlier than
l(kr−1), that is, even earlier than time t (in the consumption process representing
the serial assignment, agent kr−1 does not start consuming l(kr−1) before l(kr−2) is
exhausted). For the same reason, l(kr−3) is exhausted earlier than l(kr−2), l(kr−4)
is exhausted earlier than l(kr−3), etc., and finally, l(k1)(= a) is exhausted earlier
than l(k2), or even earlier than t. But this contradicts the fact that agent i does
not do his best on a at t in the consumption process representing ϕ(R∗). �
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